scholarly journals In vitro screening for chemical inhibition of the iodide recycling enzyme, iodotyrosine deiodinase

2021 ◽  
Vol 71 ◽  
pp. 105073
Author(s):  
Jennifer H. Olker ◽  
Joseph J. Korte ◽  
Jeffrey S. Denny ◽  
Jonathan T. Haselman ◽  
Phillip C. Hartig ◽  
...  
HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 506b-506
Author(s):  
Carol D. Robacker ◽  
S.K. Braman

Azalea lace bug (Stephanitis pyrioides) is the most serious pest on azalea. Results of laboratory bioassays and field evaluations of 17 deciduous azalea taxa have identified three resistant taxa: R. canescens, R. periclymenoides, and R. prunifolium. Highly susceptible taxa are `Buttercup', `My Mary', R. oblongifolium, and the evergreen cultivar `Delaware Valley White'. To determine whether in vitro techniques would have potential value in screening or selecting for resistance, or for the identification of morphological or chemical factors related to resistance, an in-vitro screening assay was developed. In-vitro shoot proliferation was obtained using the medium and procedures of Economou and Read (1984). Shoots used in the bioassays were grown in culture tubes. Two assays were developed: one for nymphs and one for adult lace bugs. To assay for resistance to nymphs, `Delaware Valley White' leaves containing lace bug eggs were disinfested with 70% alcohol and 20% commercial bleach, and incubated in sterile petri plates with moistened filter paper until the nymphs hatched. Five nymphs were placed in each culture tube, and cultures were incubated for about 2 weeks, or until adults were observed. To assay for resistance to adults, five female lace bugs were placed in each culture tube and allowed to feed for 5 days. Data collected on survival and leaf damage was generally supportive of laboratory bioassays and field results. Adult lace bugs had a low rate of survival on resistant taxa. Survival of nymphs was somewhat reduced on resistant taxa.


1985 ◽  
Vol 108 (4) ◽  
pp. 511-517 ◽  
Author(s):  
Nandalal Bagchi ◽  
Birdie Shivers ◽  
Thomas R. Brown

Abstract. Iodine in excess is known to acutely inhibit thyroidal secretion. In the present study we have characterized the time course of the iodine effect in vitro and investigated the underlying mechanisms. Labelled thyroid glands were cultured in vitro in medium containing mononitrotyrosine, an inhibitor of iodotyrosine deiodinase. The rate of hydrolysis of labelled thyroglobulin was measured as the proportion of labelled iodotyrosines and iodothyronines recovered at the end of culture and was used as an index of thyroidal secretion. Thyrotrophin (TSH) administered in vivo acutely stimulated the rate of thyroglobulin hydrolysis. Addition of Nal to the culture medium acutely inhibited both basal and TSH-stimulated thyroglobulin hydrolysis. The effect of iodide was demonstrable after 2 h, maximal after 6 h and was not reversible upon removal of iodide. Iodide abolished the dibutyryl cAMP induced stimulation of thyroglobulin hydrolysis. Iodide required organic binding of iodine for its effect but new protein or RNA synthesis was not necessary. The inhibitory effects of iodide and lysosomotrophic agents such as NH4C1 and chloroquin on thyroglobulin hydrolysis were additive suggesting different sites of action. Iodide added in vitro altered the distribution of label in prelabelled thyroglobulin in a way that suggested increased coupling in the thyroglobulin molecule. These data indicate that 1) the iodide effect occurs progressively over a 6 h period, 2) continued presence of iodide is not necessary once the inhibition is established, 3) iodide exerts its action primarily at a post cAMP, prelysosomal site and 4) the effect requires organic binding of iodine, but not new RNA or protein synthesis. Our data are consistent with the hypothesis that excess iodide acutely inhibits thyroglobulin hydrolysis by increasing the resistance of thyroglobulin to proteolytic degradation through increased iodination and coupling.


2003 ◽  
Vol 47 (8) ◽  
pp. 2685-2687 ◽  
Author(s):  
Luiz E. Bermudez ◽  
Robert Reynolds ◽  
Peter Kolonoski ◽  
Pricilla Aralar ◽  
Clark B. Inderlied ◽  
...  

ABSTRACT In vitro screening of thiacetazone derivatives indicated that two derivatives, SRI-286 and SRI-224, inhibited a panel of 25 Mycobacterium avium complex (MAC) isolates at concentrations of 2 μg/ml or lower. In mice, SRI-224 and thiacetazone had no significant activity against the MAC in livers and spleens, but treatment with SRI-286 resulted in significant reduction of bacterial loads in livers and spleens. A combination of SRI-286 and moxifloxacin was significantly more active than single drug regimens in liver and spleen.


2017 ◽  
Vol 32 (5) ◽  
pp. 544-551 ◽  
Author(s):  
Roberta Tardugno ◽  
Federica Pellati ◽  
Ramona Iseppi ◽  
Moreno Bondi ◽  
Giacomo Bruzzesi ◽  
...  

Author(s):  
CARMELITA G. FRONDOZA ◽  
AFSHIN SOHRABI ◽  
ANNA POLOTSKY ◽  
PHONG V. PHAN ◽  
DAVID S. HUNGERFORD ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document