In vivo treatment with aflatoxin B1 increases DNA oxidation, base excision repair activity and 8-oxoguanine DNA glycosylase 1 levels in mouse lung

Toxicology ◽  
2014 ◽  
Vol 321 ◽  
pp. 21-26 ◽  
Author(s):  
Katherine A. Guindon-Kezis ◽  
Jeanne E. Mulder ◽  
Thomas E. Massey
2013 ◽  
Vol 135 (51) ◽  
pp. 19347-19353 ◽  
Author(s):  
Qian Jin ◽  
Aaron M. Fleming ◽  
Robert P. Johnson ◽  
Yun Ding ◽  
Cynthia J. Burrows ◽  
...  

2007 ◽  
Vol 27 (17) ◽  
pp. 5949-5956 ◽  
Author(s):  
Hervé Menoni ◽  
Didier Gasparutto ◽  
Ali Hamiche ◽  
Jean Cadet ◽  
Stefan Dimitrov ◽  
...  

ABSTRACT In eukaryotes, base excision repair (BER) is responsible for the repair of oxidatively generated lesions. The mechanism of BER on naked DNA substrates has been studied in detail, but how it operates on chromatin remains unclear. Here we have studied the mechanism of BER by introducing a single 8-oxo-7,8-dihydroguanine (8-oxoG) lesion in the DNA of reconstituted positioned conventional and histone variant H2A.Bbd nucleosomes. We found that 8-oxoguanine DNA glycosylase, apurinic/apyrimidinic endonuclease, and polymerase β activities were strongly reduced in both types of nucleosomes. In conventional nucleosomes SWI/SNF stimulated the processing of 8-oxoG by each one of the three BER repair factors to efficiencies similar to those for naked DNA. Interestingly, SWI/SNF-induced remodeling, but not mobilization of conventional nucleosomes, was required to achieve this effect. A very weak effect of SWI/SNF on the 8-oxoG BER removal in H2A.Bbd histone variant nucleosomes was observed. The possible implications of our data for the understanding of in vivo mechanisms of BER are discussed.


2021 ◽  
Author(s):  
Karen Salas Briceno ◽  
Susan R. Ross

Apolipoprotein B mRNA Editing Enzyme Catalytic Subunit 3 (APOBEC3) proteins are critical for the control of infection by retroviruses. These proteins deaminate cytidines in negative strand DNA during reverse transcription, leading to G to A changes in coding strands. Uracil DNA glycosylase (UNG) is a host enzyme that excises uracils in genomic DNA, which the base excision repair machinery then repairs. Whether UNG removes uracils found in retroviral DNA after APOBEC3-mediated mutation is not clear, and whether this occurs in vivo has not been demonstrated. To determine if UNG plays a role in the repair of retroviral DNA, we used APOBEC3G (A3G) transgenic mice which we showed previously had extensive deamination of murine leukemia virus (MLV) proviruses. The A3G transgene was crossed onto an UNG and mouse APOBEC3 knockout background (UNG-/-APO-/-) and the mice were infected with MLV. We found that virus infection levels were decreased in A3G UNG-/-APO-/- compared to A3G APO-/- mice. Deep sequencing of the proviruses showed that there were significantly higher levels of G-to-A mutations in proviral DNA from A3G transgenic UNG-/-APO-/- than A3G transgenic APO-/- mice, suggesting that UNG plays a role in the repair of uracil-containing proviruses. In in vitro studies, we found that cytoplasmic viral DNA deaminated by APOBEC3G was uracilated. In the absence of UNG, the uracil-containing proviruses integrated at higher levels into the genome than did those made in the presence of UNG. Thus, UNG also functions in the nucleus prior to integration by nicking uracil-containing viral DNA, thereby blocking integration. These data show that UNG plays a critical role in the repair of the damage inflicted by APOBEC3 deamination of reverse-transcribed DNA. Importance While APOBEC3-mediated mutation of retroviruses is well-established, what role the host base excision repair enzymes play in correcting these mutations is not clear. This question is especially difficult to address in vivo . Here, we use a transgenic mouse developed by our lab that expresses human APOBEC3G and also lacks the endogenous uracil DNA glycosylase ( Ung ) gene, and show that UNG removes uracils introduced by this cytidine deaminase in MLV reverse transcripts, thereby reducing G-to-A mutations in proviruses. Furthermore, our data suggest that UNG removes uracils at two stages in infection – in unintegrated nuclear viral reverse transcribed DNA, resulting in its degradation and second, in integrated proviruses, resulting in their repair. These data suggest that retroviruses damaged by host cytidine deaminases take advantage of the host DNA repair system to overcome this damage.


2021 ◽  
Author(s):  
Karen Salas Briceno ◽  
Susan R. Ross

AbstractApolipoprotein B mRNA Editing Enzyme Catalytic Subunit 3 (APOBEC3) proteins are critical for the control of infection by retroviruses. These proteins deaminate cytidines in negative strand DNA during reverse transcription, leading to G to A changes in coding strands. Uracil DNA glycosylase (UNG) is a host enzyme that excises uracils in genomic DNA, which the base excision repair machinery then repairs. Whether UNG removes uracils found in retroviral DNA after APOBEC3-mediated mutation is not clear, and whether this occurs in vivo has not been demonstrated. To determine if UNG plays a role in the repair of retroviral DNA, we used APOBEC3G (A3G) transgenic mice which we showed previously had extensive deamination of murine leukemia virus (MLV) proviruses. The A3G transgene was crossed onto an UNG and mouse APOBEC3 knockout background (UNG-/-APO-/-) and the mice were infected with MLV. We found that virus infection levels were decreased in A3G UNG-/-APO-/- compared to A3G APO-/- mice. Deep sequencing of the proviruses showed that there were significantly higher levels of G-to-A mutations in proviral DNA from A3G transgenic UNG-/-APO-/- than A3G transgenic APO-/- mice, suggesting that UNG plays a role in the repair of uracil-containing proviruses. In in vitro studies, we found that cytoplasmic viral DNA deaminated by APOBEC3G was uracilated. In the absence of UNG, the uracil-containing proviruses integrated at higher levels into the genome than did those made in the presence of UNG. Thus, UNG also functions in the nucleus prior to integration by nicking uracil-containing viral DNA, thereby blocking integration. These data show that UNG plays a critical role in the repair of the damage inflicted by APOBEC3 deamination of reverse-transcribed DNA.ImportanceWhile APOBEC3-mediated mutation of retroviruses is well-established, what role the host base excision repair enzymes play in correcting these mutations is not clear. This question is especially difficult to address in vivo. Here, we use a transgenic mouse developed by our lab that expresses human APOBEC3G and also lacks the endogenous uracil DNA glycosylase (Ung) gene, and show that UNG removes uracils introduced by this cytidine deaminase in MLV reverse transcripts, thereby reducing G-to-A mutations in proviruses. Furthermore, our data suggest that UNG removes uracils at two stages in infection – in unintegrated nuclear viral reverse transcribed DNA, resulting in its degradation and second, in integrated proviruses, resulting in their repair. These data suggest that retroviruses damaged by host cytidine deaminases take advantage of the host DNA repair system to overcome this damage.


2002 ◽  
Vol 22 (7) ◽  
pp. 2410-2418 ◽  
Author(s):  
Gabriel W. Intano ◽  
C. Alex McMahan ◽  
John R. McCarrey ◽  
Ronald B. Walter ◽  
Allison E. McKenna ◽  
...  

ABSTRACT The combined observations of elevated DNA repair gene expression, high uracil-DNA glycosylase-initiated base excision repair, and a low spontaneous mutant frequency for a lacI transgene in spermatogenic cells from young mice suggest that base excision repair activity is high in spermatogenic cell types. Notably, the spontaneous mutant frequency of the lacI transgene is greater in spermatogenic cells obtained from old mice, suggesting that germ line DNA repair activity may decline with age. A paternal age effect in spermatogenic cells is recognized for the human population as well. To determine if male germ cell base excision repair activity changes with age, uracil-DNA glycosylase-initiated base excision repair activity was measured in mixed germ cell (i.e., all spermatogenic cell types in adult testis) nuclear extracts prepared from young, middle-aged, and old mice. Base excision repair activity was also assessed in nuclear extracts from premeiotic, meiotic, and postmeiotic spermatogenic cell types obtained from young mice. Mixed germ cell nuclear extracts exhibited an age-related decrease in base excision repair activity that was restored by addition of apurinic/apyrimidinic (AP) endonuclease. Uracil-DNA glycosylase and DNA ligase were determined to be limiting in mixed germ cell nuclear extracts prepared from young animals. Base excision repair activity was only modestly elevated in pachytene spermatocytes and round spermatids relative to other spermatogenic cells. Thus, germ line short-patch base excision repair activity appears to be relatively constant throughout spermatogenesis in young animals, limited by uracil-DNA glycosylase and DNA ligase in young animals, and limited by AP endonuclease in old animals.


2004 ◽  
Vol 24 (18) ◽  
pp. 8145-8153 ◽  
Author(s):  
Jessica Huamani ◽  
C. Alex McMahan ◽  
Damon C. Herbert ◽  
Robert Reddick ◽  
John R. McCarrey ◽  
...  

ABSTRACT Germ line DNA directs the development of the next generation and, as such, is profoundly different from somatic cell DNA. Spermatogenic cells obtained from young adult lacI transgenic mice display a lower spontaneous mutant frequency and greater in vitro base excision repair activity than somatic cells and tissues obtained from the same mice. However, spermatogenic cells from old lacI mice display a 10-fold higher mutant frequency. This increased spontaneous mutant frequency occurs coincidentally with decreased in vitro base excision repair activity for germ cell and testicular extracts that in turn corresponds to a decreased abundance of AP endonuclease. To directly test whether a genetic diminution of AP endonuclease results in increased spontaneous mutant frequencies in spermatogenic cell types, AP endonuclease heterozygous (Apex +/−) knockout mice were crossed with lacI transgenic mice. Spontaneous mutant frequencies were significantly elevated (approximately twofold) for liver and spleen obtained from 3-month-old Apex +/− lacI + mice compared to frequencies from Apex +/+ lacI + littermates and were additionally elevated for somatic tissues from 9-month-old mice. Spermatogenic cells from 9-month-old Apex +/− lacI + mice were significantly elevated twofold compared to levels for 9-month-old Apex +/+ lacI + control mice. These data indicate that diminution of AP endonuclease has a significant effect on spontaneous mutagenesis in somatic and germ line cells.


Sign in / Sign up

Export Citation Format

Share Document