The effects of N-acetylcysteine on the erythrocyte and lung tissue cholinesterase, nitric oxide and malondialdehyde levels in acute organophosphate toxicity

2011 ◽  
Vol 205 ◽  
pp. S219
Author(s):  
A. Bayir ◽  
H. Kara ◽  
O. Koylu ◽  
R. Kocabaş ◽  
A. Ak
2002 ◽  
Vol 92 (1) ◽  
pp. 33-40 ◽  
Author(s):  
Daniel Nyhan ◽  
Soonyul Kim ◽  
Stacey Dunbar ◽  
Dechun Li ◽  
Artin Shoukas ◽  
...  

Vascular contractile hyporesponsiveness is an important mechanism underlying orthostatic intolerance after microgravity. Baroreceptor reflexes can modulate both pulmonary resistance and capacitance function and thus cardiac output. We hypothesized, therefore, that pulmonary vasoreactivity is impaired in the hindlimb-unweighted (HLU) rat model of microgravity. Pulmonary artery (PA) contractile responses to phenylephrine (PE) and U-46619 (U4) were significantly decreased in the PAs from HLU vs. control (C) animals. N G-nitro-l-arginine methyl ester (10−5 M) enhanced the contractile responses in the PA rings from both C and HLU animals and completely abolished the differential responses to PE and U4 in HLU vs. C animals. Vasorelaxant responses to ACh were significantly enhanced in PA rings from HLU rats compared with C. Moreover, vasorelaxant responses to sodium nitroprusside were also significantly enhanced. Endothelial nitric oxide synthase (eNOS) and soluble guanlyl cyclase expression were significantly enhanced in PA and lung tissue from HLU rats. In marked contrast, the expression of inducible nitric oxide synthase was unchanged in lung tissue. These data support the hypothesis that vascular contractile responsiveness is attenuated in PAs from HLU rats and that this hyporesponsiveness is due at least in part to increased nitric oxide synthase activity resulting from enhanced eNOS expression. These findings may have important implications for blood volume distribution and attenuated stroke volume responses to orthostatic stress after microgravity exposure.


2008 ◽  
Vol 295 (5) ◽  
pp. L756-L766 ◽  
Author(s):  
Peter E. Oishi ◽  
Dean A. Wiseman ◽  
Shruti Sharma ◽  
Sanjiv Kumar ◽  
Yali Hou ◽  
...  

Cardiac defects associated with increased pulmonary blood flow result in pulmonary vascular dysfunction that may relate to a decrease in bioavailable nitric oxide (NO). An 8-mm graft (shunt) was placed between the aorta and pulmonary artery in 30 late gestation fetal lambs; 27 fetal lambs underwent a sham procedure. Hemodynamic responses to ACh (1 μg/kg) and inhaled NO (40 ppm) were assessed at 2, 4, and 8 wk of age. Lung tissue nitric oxide synthase (NOS) activity, endothelial NOS (eNOS), neuronal NOS (nNOS), inducible NOS (iNOS), and heat shock protein 90 (HSP90), lung tissue and plasma nitrate and nitrite (NOx), and lung tissue superoxide anion and nitrated eNOS levels were determined. In shunted lambs, ACh decreased pulmonary artery pressure at 2 wk ( P < 0.05) but not at 4 and 8 wk. Inhaled NO decreased pulmonary artery pressure at each age ( P < 0.05). In control lambs, ACh and inhaled NO decreased pulmonary artery pressure at each age ( P < 0.05). Total NOS activity did not change from 2 to 8 wk in control lambs but increased in shunted lambs (ANOVA, P < 0.05). Conversely, NOxlevels relative to NOS activity were lower in shunted lambs than controls at 4 and 8 wk ( P < 0.05). eNOS protein levels were greater in shunted lambs than controls at 4 wk of age ( P < 0.05). Superoxide levels increased from 2 to 8 wk in control and shunted lambs (ANOVA, P < 0.05) and were greater in shunted lambs than controls at all ages ( P < 0.05). Nitrated eNOS levels were greater in shunted lambs than controls at each age ( P < 0.05). We conclude that increased pulmonary blood flow results in progressive impairment of basal and agonist-induced NOS function, in part secondary to oxidative stress that decreases bioavailable NO.


1997 ◽  
Vol 272 (5) ◽  
pp. L903-L907 ◽  
Author(s):  
C. G. Robbins ◽  
S. Horowitz ◽  
T. A. Merritt ◽  
A. Kheiter ◽  
J. Tierney ◽  
...  

We previously demonstrated that 48 h of 100 ppm inhaled nitric oxide (NO) and 90% O2 causes surfactant dysfunction and pulmonary inflammation in mechanically ventilated newborn piglets. Because peroxynitrite (the product of NO and superoxide) is thought to play a major role in the injury process, recombinant human superoxide dismutase (rhSOD, a scavenger of superoxide) might minimize this insult. Four groups of newborn piglets (1-3 days of age) were ventilated with 100 ppm NO and 90% O2 for 48 h. Piglets received no drug, 5 mg/kg rhSOD intratracheally at time 0, 5 mg/kg rhSOD intratracheally at 0 and 24 h, or 10 mg/kg rhSOD by nebulization at time 0. At 48 h, bronchoalveolar lavage (BAL) was performed, and lung tissue was analyzed for markers of inflammation, oxidative injury, acute lung injury, and surfactant function. There were significant differences between rhSOD-treated piglets and untreated controls with respect to BAL neutrophil chemotactic activity, cell counts, and protein concentration as well as lung tissue malondialdehyde concentrations. Minimum surface tension of BAL surfactant from all groups studied was increased, with no differences found among groups. These data suggest that rhSOD, at the doses used, mitigated the inflammatory changes, oxidative damage, and acute lung injury from exposure to 100 ppm NO and 90% O2 but did not appear to improve surfactant function. This has important clinical implications for infants treated with hyperoxia and NO for neonatal lung disorders.


RSC Advances ◽  
2019 ◽  
Vol 9 (68) ◽  
pp. 40176-40183
Author(s):  
Jackson R. Hall ◽  
Sara E. Maloney ◽  
Haibao Jin ◽  
James B. Taylor ◽  
Mark H. Schoenfisch

Nitric oxide diffusion monitored through artificial sputum medium using an adaptable diffusion cell and released from donor through human lung tissue.


2008 ◽  
Vol 294 (6) ◽  
pp. L1197-L1205 ◽  
Author(s):  
Patrícia Angeli ◽  
Carla M. Prado ◽  
Débora G. Xisto ◽  
Pedro L. Silva ◽  
Caroline P. Pássaro ◽  
...  

The importance of lung tissue in asthma pathophysiology has been recently recognized. Although nitric oxide mediates smooth muscle tonus control in airways, its effects on lung tissue responsiveness have not been investigated previously. We hypothesized that chronic nitric oxide synthase (NOS) inhibition by Nω-nitro-l-arginine methyl ester (l-NAME) may modulate lung tissue mechanics and eosinophil and extracellular matrix remodeling in guinea pigs with chronic pulmonary inflammation. Animals were submitted to seven saline or ovalbumin exposures with increasing doses (1∼5 mg/ml for 4 wk) and treated or not with l-NAME in drinking water. After the seventh inhalation (72 h), animals were anesthetized and exsanguinated, and oscillatory mechanics of lung tissue strips were performed in baseline condition and after ovalbumin challenge (0.1%). Using morphometry, we assessed the density of eosinophils, neuronal NOS (nNOS)- and inducible NOS (iNOS)-positive distal lung cells, smooth muscle cells, as well as collagen and elastic fibers in lung tissue. Ovalbumin-exposed animals had an increase in baseline and maximal tissue resistance and elastance, eosinophil density, nNOS- and iNOS-positive cells, the amount of collagen and elastic fibers, and isoprostane-8-PGF2α expression in the alveolar septa compared with controls ( P < 0.05). l-NAME treatment in ovalbumin-exposed animals attenuated lung tissue mechanical responses ( P < 0.01), nNOS- and iNOS-positive cells, elastic fiber content ( P < 0.001), and isoprostane-8-PGF2α in the alveolar septa ( P < 0.001). However, this treatment did not affect the total number of eosinophils and collagen deposition. These data suggest that NO contributes to distal lung parenchyma constriction and to elastic fiber deposition in this model. One possibility may be related to the effects of NO activating the oxidative stress pathway.


Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 300 ◽  
Author(s):  
Farshad Tavasoli ◽  
Mingyao Liu ◽  
Tiago Machuca ◽  
Riccardo Bonato ◽  
David R. Grant ◽  
...  

An established pig lung transplantation model was used to study the effects of cold ischemia time, normothermic acellular ex vivo lung perfusion (EVLP) and reperfusion after lung transplantation on l-arginine/NO metabolism in lung tissue. Lung tissue homogenates were analyzed for NO metabolite (NOx) concentrations by chemiluminescent NO-analyzer technique, and l-arginine, l-ornithine, l-citrulline and asymmetric dimethylarginine (ADMA) quantified using liquid chromatography-mass spectrometry (LC-MS/MS). The expression of arginase and nitric oxide synthase (NOS) isoforms in lung was measured by real-time polymerase chain reaction. EVLP preservation resulted in a significant decrease in concentrations of NOx and l-citrulline, both products of NOS, at the end of EVLP and after reperfusion following transplantation, compared to control, respectively. The ratio of l-ornithine over l-citrulline, a marker of the balance between l-arginine metabolizing enzymes, was increased in the EVLP group prior to reperfusion. The expression of both arginase isoforms was increased from baseline 1 h post reperfusion in EVLP but not in the no-EVLP group. These data suggest that EVLP results in a shift of the l-arginine balance towards arginase, leading to NO deficiency in the lung. The arginase/NOS balance may, therefore, represent a therapeutic target to improve lung quality during EVLP and, subsequently, transplant outcomes.


2001 ◽  
Vol 95 (1) ◽  
pp. 102-112 ◽  
Author(s):  
Kristina Hambraeus-Jonzon ◽  
Luni Chen ◽  
Filip Fredén ◽  
Peter Wiklund ◽  
Göran Hedenstierna

Background Inhaled nitric oxide (INO) is thought to cause selective pulmonary vasodilation of ventilated areas. The authors previously showed that INO to a hyperoxic lung increases the perfusion to this lung by redistribution of blood flow, but only if the opposite lung is hypoxic, indicating a more complex mechanism of action for NO. The authors hypothesized that regional hypoxia increases NO production and that INO to hyperoxic lung regions (HL) can inhibit this production by distant effect. Methods Nitric oxide concentration was measured in exhaled air (NO(E)), NO synthase (NOS) activity in lung tissue, and regional pulmonary blood flow in anesthetized pigs with regional left lower lobar (LLL) hypoxia (fraction of inspired oxygen [FIO2] = 0.05), with and without INO to HL (FIO2 = 0.8), and during cross-circulation of blood from pigs with and without INO. Results Left lower lobar hypoxia increased exhaled NO from the LLL (NO(E)LLL) from a mean (SD) of 1.3 (0.6) to 2.2 (0.9) parts per billion (ppb) (P &lt; 0.001), and Ca2+-dependent NOS activity was higher in hypoxic than in hyperoxic lung tissue (197 [86] vs. 162 [96] pmol x g(-1) x min(-1), P &lt; 0.05). INO to HL decreased the Ca2+-dependent NOS activity in hypoxic tissue to 49 [56] pmol x g(-1) x min(-1) (P &lt; 0.01), and NO(E)LLL to 2.0 [0.8] ppb (P &lt; 0.05). When open-chest pigs with LLL hypoxia received blood from closed-chest pigs with INO, NO(E)LLL decreased from 2.0 (0.6) to 1.5 (0.4) ppb (P &lt; 0.001), and the Ca2+-dependent NOS activity in hypoxic tissue decreased from 152 (55) to 98 (34) pmol x g(-1) x min(-1) (P = 0.07). Pulmonary vascular resistance increased by 32 (21)% (P &lt; 0.05), but more so in hypoxic (P &lt; 0.01) than in hyperoxic (P &lt; 0.05) lung regions, resulting in a further redistribution (P &lt; 0.05) of pulmonary blood flow away from hypoxic to hyperoxic lung regions. Conclusions Inhaled nitric oxide downregulates endogenous NO production in other, predominantly hypoxic, lung regions. This distant effect is blood-mediated and causes vasoconstriction in lung regions that do not receive INO.


Sign in / Sign up

Export Citation Format

Share Document