elastic fibers
Recently Published Documents


TOTAL DOCUMENTS

962
(FIVE YEARS 240)

H-INDEX

59
(FIVE YEARS 6)

2022 ◽  
Vol 8 ◽  
Author(s):  
Elizabeth Andraska ◽  
Nolan Skirtich ◽  
Dylan McCreary ◽  
Rohan Kulkarni ◽  
Edith Tzeng ◽  
...  

Background: During arteriogenesis, outward remodeling of the arterial wall expands luminal diameter to produce increased conductance in developing collaterals. We have previously shown that diameter expansion without loss of internal elastic lamina (IEL) integrity requires both degradation of elastic fibers and LOX-mediated repair. The aim of this study was to investigate the expression of genes involved in remodeling of the extracellular matrix (ECM) using a model of arteriogenesis.Methods: Sprague-Dawley rats underwent femoral artery ligation with distal arteriovenous fistula (FAL + AVF) placement. Profunda femoral arteries (PFA) were harvested for analysis at various time points. Serum desmosine, an amino acid found exclusively in elastin, was evaluated with enzyme-linked immunosorbent assay (ELISA) as a marker of tissue elastolysis. Tissue mRNA isolated from FAL + AVF exposed PFAs was compared to the contralateral sham-operated using qPCR. HCAECs were cultured under low shear stress (8 dyn·s/cm2) for 24 h and then exposed to high shear stress (40 dyn·s/cm2) for 2–6 h. Primers used included FBN-1, FBN-2, Timp-2, LOX-1, Trop-E, Cath-K, Cath-S, MMP-2, MMP-9, FBLN-4, and FBLN-5 and were normalized to GAPDH. mRNA fold changes were quantified using the 2-ΔΔCq method. Comparisons between time points were made with non-parametric ANOVA analysis with Bonferroni adjustment.Results: PFAs showed IEL reorganization during arteriogenesis. Serum desmosine levels are significantly elevated at 2 days and one week, with a return to baseline thereafter (p < 0.01). Expression of ECM structural proteins (FBN-1, FBN-2, FBLN-4, FBLN-5, Tropoelastin, TIMP-2, LOX-1) and elastolytic proteins (MMP-2, MMP-9, Cathepsin S, Cathepsin K) exhibited an early peak (p < 0.05) relative to sham PFAs. After two weeks, expression returned to baseline. HCAECs demonstrated upregulation of FBN-2, FBLN-5, LOX-1 and Trop-E at 4 h of high shear stress, as well as elastolytic protein MMP-2.Conclusions: Elastin degradation begins early in arteriogenesis and is mediated by local upregulation of elastolytic genes. Elastolysis appears to be simultaneously balanced by production of elastic fiber components which may facilitate stabilization of the IEL. Endothelial cells are central to initiation of arteriogenesis and begin ECM remodeling in response to altered shear stress.


2021 ◽  
Vol 9 (1) ◽  
pp. 1-10
Author(s):  
Jose Maria Pereira de Godoy ◽  
Maria de Fatima Guerreiro Godoy ◽  
Henrique Jose Pereira de Godoy ◽  
Dalisio De Santi Neto

Background: Fibrotic diseases pose a problem for overall health due to their chronic, progressive nature; the lack of a cure; and the fact that such conditions are largely refractory to current medical and surgical treatment practices. Objective: The aim of the present study was to report the physiological stimulation of synthesis and lysis of extracellular matrix proteins during the treatment of primary lymphedema. Material and Methods: A clinical trial was conducted involving the analysis of changes in type I and III collagen fibers and elastic fibers as well as the thickness of the epidermis and dermis in 10 histological fields. Samples were taken from the skin before and after intensive treatment using the Godoy Method® and adapted to the treatment of fibrosis in a patient with a clinical diagnosis of lower limb lymphedema. Slides were stained with orcein, hematoxylin and eosin, picrosirius red, and Gomori’s reticulin stains. Weibel’s multipoint method was used for the morphometric evaluation. The data were compared using the t-test with a 95% confidence interval. Results: Significant changes were detected in all aspects of interest (thickness of the epidermis and dermis, type I and III collagen fibers, and elastic fibers). Conclusion: The present findings demonstrate the physiological stimulation of synthesis and lysis of the main components of an extracellular matrix, such as type I and III collagen fibers and elastic fibers, as well as a reduction in the thickness of the epidermis and dermis in cases of fibrosis through adequate stimulation of the lymphatic system.


2021 ◽  
Vol 23 (1) ◽  
pp. 315
Author(s):  
Risa Nonaka ◽  
Takafumi Iesaki ◽  
Aurelien Kerever ◽  
Eri Arikawa-Hirasawa

Perlecan (HSPG2), a basement membrane-type heparan sulfate proteoglycan, has been implicated in the development of aortic tissue. However, its role in the development and maintenance of the aortic wall remains unknown. Perlecan-deficient mice (Hspg2−/−-Tg: Perl KO) have been found to show a high frequency (15–35%) of aortic dissection (AD). Herein, an analysis of the aortic wall of Perl KO mice revealed that perlecan deficiency caused thinner and partially torn elastic lamina. Compared to the control aortic tissue, perlecan-deficient aortic tissue showed a significant decrease in desmosine content and an increase in soluble tropoelastin levels, implying the presence of immature elastic fibers in Perl KO mice. Furthermore, the reduced expression of the smooth muscle cell contractile proteins actin and myosin in perlecan-deficient aortic tissue may explain the risk of AD. This study showed that a deficiency in perlecan, which is localized along the elastic lamina and at the interface between elastin and fibrillin-1, increased the risk of AD, largely due to the immaturity of extracellular matrix in the aortic tissue. Overall, we proposed a new model of AD that considers the deficiency of extracellular molecule perlecan as a risk factor.


Author(s):  
Sarah Colando ◽  
Jennifer Seyffert ◽  
Daniel Rivlin

<p class="abstract">Granulomatous slack skin is a rare variant of cutaneous T-cell lymphoma characterized by lax skin and granulomatous infiltrate with loss of elastic fibers on histology. We report a unique case of a female presenting with CD30-granulomatous slack skin complicated by hypercalcemia, initially diagnosed, and managed as sarcoidosis. Interestingly, she had a history of previously treated CD30+ cutaneous T-cell lymphoma. Granulomatous slack skin can frequently mimic other benign and malignant cutaneous diseases, prompting the need for clinical vigilance from dermatologists.</p>


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 7
Author(s):  
Ryan M. McEnaney ◽  
Dylan D. McCreary ◽  
Nolan O. Skirtich ◽  
Elizabeth A. Andraska ◽  
Ulka Sachdev ◽  
...  

When a large artery becomes occluded, hemodynamic changes stimulate remodeling of arterial networks to form collateral arteries in a process termed arteriogenesis. However, the structural changes necessary for collateral remodeling have not been defined. We hypothesize that deconstruction of the extracellular matrix is essential to remodel smaller arteries into effective collaterals. Using multiphoton microscopy, we analyzed collagen and elastin structure in maturing collateral arteries isolated from ischemic rat hindlimbs. Collateral arteries harvested at different timepoints showed progressive diameter expansion associated with striking rearrangement of internal elastic lamina (IEL) into a loose fibrous mesh, a pattern persisting at 8 weeks. Despite a 2.5-fold increase in luminal diameter, total elastin content remained unchanged in collaterals compared with control arteries. Among the collateral midzones, baseline elastic fiber content was low. Outward remodeling of these vessels with a 10–20 fold diameter increase was associated with fractures of the elastic fibers and evidence of increased wall tension, as demonstrated by the straightening of the adventitial collagen. Inhibition of lysyl oxidase (LOX) function with β-aminopropionitrile resulted in severe fragmentation or complete loss of continuity of the IEL in developing collaterals. Collateral artery development is associated with permanent redistribution of existing elastic fibers to accommodate diameter growth. We found no evidence of new elastic fiber formation. Stabilization of the arterial wall during outward remodeling is necessary and dependent on LOX activity.


2021 ◽  
Vol 10 (24) ◽  
pp. 5930
Author(s):  
Javier Martín-López ◽  
Consuelo Pérez-Rico ◽  
Selma Benito-Martínez ◽  
Bárbara Pérez-Köhler ◽  
Julia Buján ◽  
...  

Pterygium is a benign fibrovascular lesion of the bulbar conjunctiva with frequent involvement of the corneal limbus. Its pathogenesis has been mainly attributed to sun exposure to ultraviolet-B radiation. Obtained evidence has shown that it is a complex and multifactorial process which involves multiple mechanisms such as oxidative stress, dysregulation of cell cycle checkpoints, induction of inflammatory mediators and growth factors, angiogenic stimulation, extracellular matrix (ECM) disorders, and, most likely, viruses and hereditary changes. In this review, we aim to collect all authors’ experiences and our own, with respect to the study of fibroelastic ECM of pterygium. Collagen and elastin are intrinsic indicators of physiological and pathological states. Here, we focus on an in-depth analysis of collagen (types I and III), as well as the main constituents of elastic fibers (tropoelastin (TE), fibrillins (FBNs), and fibulins (FBLNs)) and the enzymes (lysyl oxidases (LOXs)) that carry out their assembly or crosslinking. All the studies established that changes in the fibroelastic ECM occur in pterygium, based on the following facts: An increase in the synthesis and deposition of an immature form of collagen type III, which showed the process of tissue remodeling. An increase in protein levels in most of the constituents necessary for the development of elastic fibers, except FBLN4, whose biological roles are critical in the binding of the enzyme LOX, as well as FBN1 for the development of stable elastin. There was gene overexpression of TE, FBN1, FBLN5, and LOXL1, while the expression of LOX and FBLN2 and -4 remained stable. In conclusion, collagen and elastin, as well as several constituents involved in elastic fiber assembly are overexpressed in human pterygium, thus, supporting the hypothesis that there is dysregulation in the synthesis and crosslinking of the fibroelastic component, constituting an important pathogenetic mechanism for the development of the disease.


2021 ◽  
Vol 8 ◽  
Author(s):  
Cristina Cavinato ◽  
Minghao Chen ◽  
Dar Weiss ◽  
Maria Jesús Ruiz-Rodríguez ◽  
Martin A. Schwartz ◽  
...  

Medial deterioration leading to thoracic aortic aneurysms arises from multiple causes, chief among them mutations to the gene that encodes fibrillin-1 and leads to Marfan syndrome. Fibrillin-1 microfibrils associate with elastin to form elastic fibers, which are essential structural, functional, and instructional components of the normal aortic wall. Compromised elastic fibers adversely impact overall structural integrity and alter smooth muscle cell phenotype. Despite significant progress in characterizing clinical, histopathological, and mechanical aspects of fibrillin-1 related aortopathies, a direct correlation between the progression of microstructural defects and the associated mechanical properties that dictate aortic functionality remains wanting. In this paper, age-matched wild-type, Fbn1C1041G/+, and Fbn1mgR/mgR mouse models were selected to represent three stages of increasing severity of the Marfan aortic phenotype. Ex vivo multiphoton imaging and biaxial mechanical testing of the ascending and descending thoracic aorta under physiological loading conditions demonstrated that elastic fiber defects, collagen fiber remodeling, and cell reorganization increase with increasing dilatation. Three-dimensional microstructural characterization further revealed radial patterns of medial degeneration that become more uniform with increasing dilatation while correlating strongly with increased circumferential material stiffness and decreased elastic energy storage, both of which comprise aortic functionality.


Author(s):  
Agnieszka M. Slowicka ◽  
Nan Xue ◽  
Pawel Sznajder ◽  
Janine K Nunes ◽  
Howard A Stone ◽  
...  

Abstract Three-dimensional dynamics of flexible fibers in shear flow are studied numerically, with a qualitative comparison to experiments. Initially, the fibers are straight, with different orientations with respect to the flow. By changing the rotation speed of a shear rheometer, we change the ratio A of bending to shear forces. We observe fibers in the flow-vorticity plane, which gives insight into the motion out of the shear plane. The numerical simulations of moderately flexible fibers show that they rotate along effective Jeffery orbits, and therefore the fiber orientation rapidly becomes very close to the flow-vorticity plane, on average close to the flow direction, and the fiber remains in an almost straight configuration for a long time. This ``ordering'' of fibers is temporary since they alternately bend and straighten out while tumbling. We observe numerically and experimentally that if the fibers are initially in the compressional region of the shear flow, they can undergo a compressional buckling, with a pronounced deformation of shape along their whole length during a short time, which is in contrast to the typical local bending that originates over a long time from the fiber ends. We identify differences between local and compressional bending and discuss their competition, which depends on the initial orientation of the fiber and the bending stiffness ratio A. There are two main finding. First, the compressional buckling is limited to a certain small range of the initial orientations, excluding those from the flow-vorticity plane. Second, since fibers straighten out in the flow-vorticity plane while tumbling, the compressional buckling is transient - it does not appear for times longer than 1/4 of the Jeffery period. For larger times, bending of fibers is always driven by their ends.


2021 ◽  
Vol 8 ◽  
Author(s):  
Sana Nasim ◽  
Popular Pandey ◽  
Rosemeire M. Kanashiro-Takeuchi ◽  
Jin He ◽  
Joshua D. Hutcheson ◽  
...  

The aortic valve (AoV) maintains unidirectional blood distribution from the left ventricle of the heart to the aorta for systemic circulation. The AoV leaflets rely on a precise extracellular matrix microarchitecture of collagen, elastin, and proteoglycans for appropriate biomechanical performance. We have previously demonstrated a relationship between the presence of pigment in the mouse AoV with elastic fiber patterning using multiphoton imaging. Here, we extended those findings using wholemount confocal microscopy revealing that elastic fibers were diminished in the AoV of hypopigmented mice (KitWv and albino) and were disorganized in the AoV of K5-Edn3 transgenic hyperpigmented mice when compared to wild type C57BL/6J mice. We further used atomic force microscopy to measure stiffness differences in the wholemount AoV leaflets of mice with different levels of pigmentation. We show that AoV leaflets of K5-Edn3 had overall higher stiffness (4.42 ± 0.35 kPa) when compared to those from KitWv (2.22 ± 0.21 kPa), albino (2.45 ± 0.16 kPa), and C57BL/6J (3.0 ± 0.16 kPa) mice. Despite the striking elastic fiber phenotype and noted stiffness differences, adult mutant mice were found to have no overt cardiac differences as measured by echocardiography. Our results indicate that pigmentation, but not melanocytes, is required for proper elastic fiber organization in the mouse AoV and dictates its biomechanical properties.


Sign in / Sign up

Export Citation Format

Share Document