scholarly journals Investigating the interaction between Organic Anion Transporter 1 and Ochratoxin A: an in silico structural study to depict early molecular events of substrate recruitment and the impact of single point mutations

Author(s):  
Jochem Louisse ◽  
Jean Lou C.M Dorne ◽  
Luca Dellafiora
2019 ◽  
Author(s):  
Nobutaka Fujieda ◽  
Miho Yuasa ◽  
Yosuke Nishikawa ◽  
Genji Kurisu ◽  
Shinobu Itoh ◽  
...  

Cupin superfamily proteins (TM1459) work as a macromolecular ligand framework with a double-stranded beta-barrel structure ligating to a Cu ion through histidine side chains. Variegating the first coordination sphere of TM1459 revealed that H52A and H54A/H58A mutants effectively catalyzed the diastereo- and enantio-selective Michael addition reaction of nitroalkanes to an α,β-unsaturated ketone. Moreover, in silico substrate docking signified C106N and F104W single-point mutations, which inverted the diastereoselectivity of H52A and further improved the stereoselectivity of H54A/H58A, respectively.


2002 ◽  
Vol 1590 (1-3) ◽  
pp. 64-75 ◽  
Author(s):  
Ellappan Babu ◽  
Michio Takeda ◽  
Shinichi Narikawa ◽  
Yukari Kobayashi ◽  
Atsushi Enomoto ◽  
...  

1998 ◽  
Vol 9 (11) ◽  
pp. 1973-1982 ◽  
Author(s):  
J R Welborn ◽  
C E Groves ◽  
S H Wright

Epifluorescence microscopy was used to study peritubular transport of the fluorescent mycotoxin ochratoxin A (OTA) into single proximal tubule segments of the rabbit. Initial rates of OTA uptake into S2 segments were saturable and adequately described by Michaelis-Menten kinetics, with an apparent Km of 2.2+/-0.3 microM (SEM). Several lines of evidence indicated that peritubular uptake of OTA in S2 segments was effectively limited to the "classical" organic anion transporter. First, 5 mM p-aminohippurate (PAH) cis-inhibited the uptake of 1 microM OTA into tubules by 96%. Kinetic analysis of the inhibition of OTA uptake by PAH (100 microM to 5 mM) yielded an apparent Ki of 164 microM, similar to the 100 to 200 microM range of Km values previously reported for the peritubular uptake of PAH. Second, efflux of OTA from tubules was trans-stimulated 3.2-fold by the presence of 2.5 mM PAH in the uptake medium. Third, 100 microM alpha-ketoglutarate (alphaKG) trans-stimulated the uptake rate of 1 microM OTA by 1.8-fold. Fourth, besides PAH, other organic anions effectively cis-inhibited the uptake of 1 microM OTA into tubules (inhibitor, % inhibition): 1.5 mM alphaKG, 80%; 1 mM probenecid, 100%; 1 mM piroxicam, 100%; 1 mM octanoate, 100%. In contrast, 1.5 mM tetraethylammonium, an organic cation, blocked uptake of 1 microM OTA by only 7%. The inhibition of OTA uptake into S1 and S3 segments of the proximal tubule was qualitatively similar: 5 mM PAH cis-inhibited the uptake of 1 microM OTA by approximately 95% in both S1 and S3 segments. Thus, peritubular OTA uptake into all segments of the proximal tubule appears to be dominated by its interaction with the classical organic anion transporter. The high-affinity and relatively high capacity of this pathway for OTA suggest that peritubular uptake may be a significant avenue for the entry of this toxin into proximal tubule cells.


2004 ◽  
Vol 287 (2) ◽  
pp. F236-F244 ◽  
Author(s):  
Geri L. Youngblood ◽  
Douglas H. Sweet

An uncharacterized murine cDNA clone was identified and, through sequence, phylogenetic, and functional analysis, determined to encode the newest member of the organic anion transporter family, organic anion transporter 5 (Oat5; Slc22a19). The Oat5 cDNA clone contained an insert 1,964 bp in length with a predicted open reading frame (from bp 84 to bp 1,739) coding for a peptide 551 amino acids long. Slc22a19 was localized to mouse chromosome 19 near the genes encoding Oat1 ( Slc22a6) and Oat3 ( Slc22a8). Northern blot analysis revealed Oat5 is highly expressed in the kidney of adult mice and rats. No sexual dimorphism in renal or hepatic expression of Oat5 was observed. Unlike Oat1–3, Oat5 expression was not detected in the choroid plexus of either mice or rats. Murine Oat5-expressing Xenopus laevis oocytes supported increased accumulation of the mycotoxin ochratoxin A, compared with water-injected control oocytes. This uptake was significantly inhibited by probenecid and the organic anions 2,4-dichlorophenoxyacetic acid, salicylate, and estrone sulfate but not by para-aminohippurate or urate. Transport of ochratoxin A by murine Oat5 was saturable, with an estimated Km of 2.0 ± 0.45 μM. Oat5-mediated transport was neither cis-inhibited nor trans-stimulated by the dicarboxylate glutarate. Uptake was also completely unaffected by short-circuiting of the membrane potential. Thus the motive forces behind Oat5 function, which provide insight into its membrane localization, need to be further resolved. These data demonstrate for the first time that this newly identified gene encodes a protein that functions as an organic anion transporter.


2022 ◽  
Author(s):  
Angelika Janaszkiewicz ◽  
Ágota Tóth ◽  
Quentin Faucher ◽  
Marving Martin ◽  
Benjamin Chantemargue ◽  
...  

The human SLC22A6/OAT1 plays an important role in the disposition of a broad range of endogenous substances and xenobiotics. This is particularly important from the pharmacological point of view since OAT1 is involved in drug elimination events. Furthermore, OAT1 is also involved in key physiological events such as the remote inter-organ communication. Despite its significance, the knowledge about OAT1 structure and the transport mechanism at the atomic level remains fragmented owing to the lack of resolved structures. By means of protein-threading modeling refined by μs-scaled Molecular Dynamics simulations, the present study provides the first robust model of hOAT1 in outward-facing conformation. Taking advantage of the AlphaFold 2 predicted structure of hOAT1 in inward-facing conformation, we here provide the essential structural and functional features comparing both states. The intracellular motifs conserved among Major Facilitator Superfamily members create a so-called "charge-relay system" that works as molecular switches modulating the conformation. The principal element of the event points at interactions charged residues that appear crucial for the transporter dynamics and function. Besides, hOAT1 model was embedded in different lipid bilayer membranes highlighting the crucial structural dependence on lipid-protein. MD simulations supported the pivotal role of phosphatidylethanolamine (PE) components on the protein conformation stability. The present model is made available to decipher the impact of any observed polymorphism and mutation on drug transport as well as to understand substrate binding modes.


10.29007/7gnf ◽  
2020 ◽  
Author(s):  
Dylan Carpenter ◽  
Tess Thackray ◽  
Cecilia Kalthoff ◽  
Filip Jagodzinski

A mutation to the amino acid sequence of a protein can cause a biomolecule to be resistant to the intended effects of a drug. Assessing the changes of a drug’s efficacy in response to mutations via mutagenesis wet-lab experiments is prohibitively time consuming for even a single point mutation, let alone for all possible mutations. Existing approaches for inferring mutation-induced drug resistance are available, but all of them reason about mutations of residues at or very near the protein-drug interface. However, there are examples of mutations far away from the region where the ligand binds, but which nonetheless render a protein resistant to the effects of the drug. We present a proof-of-concept computational pipeline that generates in silico the set of all possible single point mutations in a protein-ligand complex. We assess drug resistance using a graph theoretic rigidity analysis approach. Unlike existing methods, we are able to assess the impact of mutations far away from the protein-drug interface. We introduce several visualizations for exploring how amino acid substitutions both near and far away from where the ligand interacts with a protein target have a stabilizing or destabilizing effect on the protein-drug complex. We discuss our analytical approach in the context of experimental data from the literature about clinically known protein-drug interactions.


2019 ◽  
Author(s):  
Nobutaka Fujieda ◽  
Haruna Ichihashi ◽  
Miho Yuasa ◽  
Yosuke Nishikawa ◽  
Genji Kurisu ◽  
...  

Cupin superfamily proteins (TM1459) work as a macromolecular ligand framework with a double-stranded beta-barrel structure ligating to a Cu ion through histidine side chains. Variegating the first coordination sphere of TM1459 revealed that H52A and H54A/H58A mutants effectively catalyzed the diastereo- and enantio-selective Michael addition reaction of nitroalkanes to an α,β-unsaturated ketone. Moreover, in silico substrate docking signified C106N and F104W single-point mutations, which inverted the diastereoselectivity of H52A and further improved the stereoselectivity of H54A/H58A, respectively.


2005 ◽  
Vol 2 (5) ◽  
pp. 489-503 ◽  
Author(s):  
Christophe Fraser

Retroviral recombination is a potential mechanism for the development of multiply drug resistant viral strains but the impact on the clinical outcomes of antiretroviral therapy in HIV-infected patients is unclear. Recombination can favour resistance by combining single-point mutations into a multiply resistant genome but can also hinder resistance by breaking up associations between mutations. Previous analyses, based on population genetic models, have suggested that whether recombination is favoured or hindered depends on the fitness interactions between loci, or epistasis. In this paper, a mathematical model is developed that includes viral dynamics during therapy and shows that population dynamics interact non-trivially with population genetics. The outcome of therapy depends critically on the changes to the frequency of cell co-infection and I review the evidence available. Where recombination does have an effect on therapy, it is always to slow or even halt the emergence of multiply resistant strains. I also find that for patients newly infected with multiply resistant strains, recombination can act to prevent reversion to wild-type virus. The analysis suggests that treatment targeted at multiple parts of the viral life-cycle may be less prone to drug resistance due to the genetic barrier caused by recombination but that, once selected, mutants resistant to such regimens may be better able to persist in the population.


2011 ◽  
Vol 116 (4) ◽  
pp. 392-396 ◽  
Author(s):  
Promsuk Jutabha ◽  
Naohiko Anzai ◽  
Keitaro Hayashi ◽  
Mariko Domae ◽  
Kohsuke Uchida ◽  
...  

2018 ◽  
Vol 62 (7) ◽  
Author(s):  
Emanuele Focà ◽  
Andrea Calcagno ◽  
Andrea Bonito ◽  
Jessica Cusato ◽  
Elisabetta Domenighini ◽  
...  

ABSTRACT Atazanavir-ritonavir concentrations change over time during pregnancy in HIV-positive patients; the impact of genetic variants is unknown. Twenty patients were enrolled in this study; plasma and intracellular concentrations of antiretrovirals were measured, in addition to single-nucleotide polymorphisms in transport-related genes. Linear logistic regression showed that genetic variants in organic-anion-transporter-1B1- and pregnane-X-receptor-encoding genes affected third-trimester atazanavir exposure. In this prospective study, genetic variants partially explained the observed interpatient variability in third-trimester exposure to antiretrovirals.


Sign in / Sign up

Export Citation Format

Share Document