scholarly journals Electron backscattering diffraction as a complementary analytical approach to the microstructural characterization of ancient materials by electron microscopy

2015 ◽  
Vol 72 ◽  
pp. 193-201 ◽  
Author(s):  
J. Pérez-Arantegui ◽  
A. Larrea
Author(s):  
G. M. Micha ◽  
L. Zhang

RENi5 (RE: rare earth) based alloys have been extensively evaluated for use as an electrode material for nickel-metal hydride batteries. A variety of alloys have been developed from the prototype intermetallic compound LaNi5. The use of mischmetal as a source of rare earth combined with transition metal and Al substitutions for Ni has caused the evolution of the alloy from a binary compound to one containing eight or more elements. This study evaluated the microstructural features of a complex commercial RENi5 based alloy using scanning and transmission electron microscopy.The alloy was evaluated in the as-cast condition. Its chemistry in at. pct. determined by bulk techniques was 12.1 La, 3.2 Ce, 1.5 Pr, 4.9 Nd, 50.2 Ni, 10.4 Co, 5.3 Mn and 2.0 Al. The as-cast material was of low strength, very brittle and contained a multitude of internal cracks. TEM foils could only be prepared by first embedding pieces of the alloy in epoxy.


1996 ◽  
Vol 433 ◽  
Author(s):  
Jeong Soo Lee ◽  
Hyun JA Kwon ◽  
Young Woo Jeong ◽  
Hyun HA Kim ◽  
Kyu HO Park ◽  
...  

AbstractMicrostructures and interdiffusions of Pt/Ti/SiO2/Si and RuO2/SiO2/Si during annealing in O2 were investigated using x-ray diffraction, Auger electron spectroscopy, scanning electron microscopy, and transmission electron microscopy. The degree of oxidation and the interdiffusion of elements have remarkably increased with increasing temperature above 500 °C for the Pt/Ti/SiO2/Si case. The generation of Pt hillocks commenced at 500 °C. The Pt-silicide phase was also observed near the TiOx/SiO2 interface. The microstructural variations occurred to only a small amount for the RuO2/SiO2/Si case over the temperature range 300 – 700 °C. While there was no hillock formation, the RuO2 film surface was roughened by the thermal grooving phenomenon. A thin interlayer phase was found at the RuO2/SiO2 interface.


RSC Advances ◽  
2016 ◽  
Vol 6 (98) ◽  
pp. 96057-96064 ◽  
Author(s):  
Juliette Merle ◽  
Pascale Sénéchal ◽  
Fabrice Guerton ◽  
Peter Moonen ◽  
Pierre Trinsoutrot ◽  
...  

The objective of this work is to compare three techniques for characterizing the morphology of porous bio-based carbon foam, namely mercury intrusion porosimetry, scanning electron microscopy and X-ray microtomography.


1996 ◽  
Vol 31 (21) ◽  
pp. 5683-5689 ◽  
Author(s):  
G. M. Pajonk ◽  
A. Venkateswara Rao ◽  
N. N. Parvathy ◽  
E. Elaloui

2012 ◽  
Vol 18 (5) ◽  
pp. 1181-1189 ◽  
Author(s):  
Giovanni Borsoi ◽  
Martha Tavares ◽  
Rosário Veiga ◽  
Antonio Santos Silva

AbstractThe conservation and durability of historical renders must be carried out through compatible techniques and materials. An important operation is the restitution of historical renders cohesion, turned friable by the loss of binder, usually due to physical and/or chemical actions. Surface consolidation is based on the use of materials with aggregating properties. This operation is reached usually through the application of organic or mineral consolidants, but inorganic consolidants are becoming preferred due to better compatibility and durability. In this article two mineral compatible consolidation products were studied: a commercial suspension of calcium hydroxide nanoparticles in propanol and a limewater dispersion of ethyl silicate. Microscopy (optical and scanning electron microscopy) and X-ray microanalyses of the consolidation products and of the consolidated mortar specimens were carried out. To assess the mechanical properties and product's efficacy, analyses of the compression, flexural strength, and superficial hardness were performed. Microscopy results show that limewater dispersion of ethyl silicate forms platelike silica gels, which can interfere in product penetration. Otherwise, nanolime particles permit homogeneous distribution and optimum penetration on the treated substrate, improving cementing action and the agglomeration process.


Sign in / Sign up

Export Citation Format

Share Document