Capillary electrophoresis and asymmetric flow field-flow fractionation for size-based separation of engineered metallic nanoparticles: A critical comparative review

2018 ◽  
Vol 106 ◽  
pp. 202-212 ◽  
Author(s):  
Thilak K. Mudalige ◽  
Haiou Qu ◽  
Desiree Van Haute ◽  
Siyam M. Ansar ◽  
Sean W. Linder
2014 ◽  
Vol 3 (1) ◽  
pp. 87-98 ◽  
Author(s):  
Jens Baumgard ◽  
Marga-Martina Pohl ◽  
Udo Kragl ◽  
Norbert Steinfeldt

AbstractThe optical, chemical, and catalytic properties of metallic nanoparticles (NPs) depend strongly on their particle size and shape. Therefore, the preparation of monodisperse metallic NPs is very important for fundamental studies and practical applications. However, the isolation of the different structures by separation from a polydisperse sample, especially in the size range below 10 nm, is not well applied so far. Here, the asymmetric flow field flow fractionation (AF4) is adapted for the preparative separation of the Pd NPs regarding their size and shape in the sub-10-nm size range. To prove the efficiency of the applied method, small-angle X-ray scattering (SAXS) and high-resolution transmission electron microscopy (TEM) were utilized to determine the particle size distribution at different stages of the separation process. A major benefit of this method compared to most of the other separation techniques, the removal of impurities during the separation process, was proven by proton nuclear magnetic resonance (NMR). The obtained results demonstrate that the AF4 is well suited for the rapid preparation of the purified uniform precious metal NPs at the applied size range. Single fractions of the different-sized and -shaped Pd NPs were deposited on titania (TiO2) and tested in the catalytic hydrogenation of 2,5 hydroxymethylfurfural (HMF) in aqueous solution under mild conditions. While the spherical-shaped particles show a high activity, the separated agglomerated particles show a higher selectivity to the desired products.


2021 ◽  
Author(s):  
Francesco Giorgi ◽  
Judith M. Curran ◽  
Douglas Gilliland ◽  
Rita La Spina ◽  
Maurice Whelan ◽  
...  

AbstractThe development of reliable protocols suitable for the characterisation of the physical properties of nanoparticles in suspension is becoming crucial to assess the potential biological as well as toxicological impact of nanoparticles. Amongst sizing techniques, asymmetric flow field flow fractionation (AF4) coupled to online size detectors represents one of the most robust and flexible options to quantify the particle size distribution in suspension. However, size measurement uncertainties have been reported for on-line dynamic light scattering (DLS) detectors when coupled to AF4 systems. In this work we investigated the influence of the initial concentration of nanoparticles in suspension on the sizing capability of the asymmetric flow field-flow fractionation technique coupled with an on-line dynamic light scattering detector and a UV–Visible spectrophotometer (UV) detector. Experiments were performed with suspensions of gold nanoparticles with a nominal diameter of 40 nm and 60 nm at a range of particle concentrations. The results obtained demonstrate that at low concentration of nanoparticles, the AF4-DLS combined technique fails to evaluate the real size of nanoparticles in suspension, detecting an apparent and progressive size increase as a function of the elution time and of the concentration of nanoparticles in suspension.


2018 ◽  
Vol 7 (1) ◽  
pp. 216-223 ◽  
Author(s):  
Irina Sulaeva ◽  
Philipp Vejdovszky ◽  
Ute Henniges ◽  
Arnulf Kai Mahler ◽  
Thomas Rosenau ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document