scholarly journals Spatiotemporal short-term traffic forecasting using the network weight matrix and systematic detrending

2019 ◽  
Vol 104 ◽  
pp. 38-52 ◽  
Author(s):  
Alireza Ermagun ◽  
David Levinson
2018 ◽  
Vol 46 (9) ◽  
pp. 1684-1705 ◽  
Author(s):  
Alireza Ermagun ◽  
David M Levinson

To capture network dependence between traffic links, we introduce two distinct network weight matrices ([Formula: see text]), which replace spatial weight matrices used in traffic forecasting methods. The first stands on the notion of betweenness centrality and link vulnerability in traffic networks. To derive this matrix, we use an unweighted betweenness method and assume all traffic flow is assigned to the shortest path. The other relies on flow rate change in traffic links. For forming this matrix, we use the flow information of traffic links and employ user equilibrium assignment and the method of successive averages algorithm to solve the network. The components of the network weight matrices are a function not simply of adjacency, but of network topology, network structure, and demand configuration. We test and compare the network weight matrices in different traffic conditions using the Nguyen–Dupuis network. The results lead to a conclusion that the network weight matrices operate better than traditional spatial weight matrices. Comparing the unweighted and flow-weighted network weight matrices, we also reveal that the assigned flow network weight matrices perform two times better than a betweenness network weight matrix, particularly in congested traffic conditions.


CICTP 2017 ◽  
2018 ◽  
Author(s):  
Xinchao Chen ◽  
Si Qin ◽  
Jian Zhang ◽  
Huachun Tan ◽  
Yunxia Xu ◽  
...  

2021 ◽  
pp. 102101
Author(s):  
Kailong Zhang ◽  
Chenyu Xie ◽  
Yujia Wang ◽  
Sotelo Miguel Ángel ◽  
Thi Mai Trang Nguyen ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1151
Author(s):  
Carolina Gijón ◽  
Matías Toril ◽  
Salvador Luna-Ramírez ◽  
María Luisa Marí-Altozano ◽  
José María Ruiz-Avilés

Network dimensioning is a critical task in current mobile networks, as any failure in this process leads to degraded user experience or unnecessary upgrades of network resources. For this purpose, radio planning tools often predict monthly busy-hour data traffic to detect capacity bottlenecks in advance. Supervised Learning (SL) arises as a promising solution to improve predictions obtained with legacy approaches. Previous works have shown that deep learning outperforms classical time series analysis when predicting data traffic in cellular networks in the short term (seconds/minutes) and medium term (hours/days) from long historical data series. However, long-term forecasting (several months horizon) performed in radio planning tools relies on short and noisy time series, thus requiring a separate analysis. In this work, we present the first study comparing SL and time series analysis approaches to predict monthly busy-hour data traffic on a cell basis in a live LTE network. To this end, an extensive dataset is collected, comprising data traffic per cell for a whole country during 30 months. The considered methods include Random Forest, different Neural Networks, Support Vector Regression, Seasonal Auto Regressive Integrated Moving Average and Additive Holt–Winters. Results show that SL models outperform time series approaches, while reducing data storage capacity requirements. More importantly, unlike in short-term and medium-term traffic forecasting, non-deep SL approaches are competitive with deep learning while being more computationally efficient.


Author(s):  
Yunxuan Li ◽  
Jian Lu ◽  
Lin Zhang ◽  
Yi Zhao

The Didi Dache app is China’s biggest taxi booking mobile app and is popular in cities. Unsurprisingly, short-term traffic demand forecasting is critical to enabling Didi Dache to maximize use by drivers and ensure that riders can always find a car whenever and wherever they may need a ride. In this paper, a short-term traffic demand forecasting model, Wave SVM, is proposed. It combines the complementary advantages of Daubechies5 wavelets analysis and least squares support vector machine (LS-SVM) models while it overcomes their respective shortcomings. This method includes four stages: in the first stage, original data are preprocessed; in the second stage, these data are decomposed into high-frequency and low-frequency series by wavelet; in the third stage, the prediction stage, the LS-SVM method is applied to train and predict the corresponding high-frequency and low-frequency series; in the last stage, the diverse predicted sequences are reconstructed by wavelet. The real taxi-hailing orders data are applied to evaluate the model’s performance and practicality, and the results are encouraging. The Wave SVM model, compared with the prediction error of state-of-the-art models, not only has the best prediction performance but also appears to be the most capable of capturing the nonstationary characteristics of the short-term traffic dynamic systems.


Sign in / Sign up

Export Citation Format

Share Document