Sequence to sequence learning with attention mechanism for short-term passenger flow prediction in large-scale metro system

2019 ◽  
Vol 107 ◽  
pp. 287-300 ◽  
Author(s):  
Siyu Hao ◽  
Der-Horng Lee ◽  
De Zhao
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Hao Zhang ◽  
Jie He ◽  
Jie Bao ◽  
Qiong Hong ◽  
Xiaomeng Shi

The primary objective of this study is to predict the short-term metro passenger flow using the proposed hybrid spatiotemporal deep learning neural network (HSTDL-net). The metro passenger flow data is collected from line 2 of Nanjing metro system to illustrate the study procedure. A hybrid spatiotemporal deep learning model is developed to predict both inbound and outbound passenger flows for every 10 minutes. The results suggest that the proposed HSTDL-net achieves better prediction performance on suburban stations than on urban stations, as well as generating the best prediction accuracy on transfer stations in terms of the lowest MAPE value. Moreover, a comparative analysis is conducted to compare the performance of proposed HSTDL-net with other typical methods, such as ARIMA, MLP, CNN, LSTM, and GBRT. The results indicate that, for both inbound and outbound passenger flow predictions, the HSTDL-net outperforms all the compared models on three types of stations. The results suggest that the proposed hybrid spatiotemporal deep learning neural network can more effectively and fully discover both spatial and temporal hidden correlations between stations for short-term metro passenger flow prediction. The results of this study could provide insightful suggestions for metro system authorities to adjust the operation plans and enhance the service quality of the entire metro system.


2019 ◽  
Vol 29 (11n12) ◽  
pp. 1727-1740 ◽  
Author(s):  
Hongming Zhu ◽  
Yi Luo ◽  
Qin Liu ◽  
Hongfei Fan ◽  
Tianyou Song ◽  
...  

Multistep flow prediction is an essential task for the car-sharing systems. An accurate flow prediction model can help system operators to pre-allocate the cars to meet the demand of users. However, this task is challenging due to the complex spatial and temporal relations among stations. Existing works only considered temporal relations (e.g. using LSTM) or spatial relations (e.g. using CNN) independently. In this paper, we propose an attention to multi-graph convolutional sequence-to-sequence model (AMGC-Seq2Seq), which is a novel deep learning model for multistep flow prediction. The proposed model uses the encoder–decoder architecture, wherein the encoder part, spatial and temporal relations are encoded simultaneously. Then the encoded information is passed to the decoder to generate multistep outputs. In this work, specific multiple graphs are constructed to reflect spatial relations from different aspects, and we model them by using the proposed multi-graph convolution. Attention mechanism is also used to capture the important relations from previous information. Experiments on a large-scale real-world car-sharing dataset demonstrate the effectiveness of our approach over state-of-the-art methods.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 42946-42955 ◽  
Author(s):  
Jianyuan Guo ◽  
Zhen Xie ◽  
Yong Qin ◽  
Limin Jia ◽  
Yaguan Wang

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Xiaoqing Dai ◽  
Lijun Sun ◽  
Yanyan Xu

Reliable prediction of short-term passenger flow could greatly support metro authorities’ decision processes, help passengers to adjust their travel schedule, or, in extreme cases, assist emergency management. The inflow and outflow of the metro station are strongly associated with the travel demand within metro networks. The purpose of this paper is to obtain such prediction. We first collect the origin-destination information from the smart-card data and explore the passenger flow patterns in a metro system. We then propose a data driven framework for short-term metro passenger flow prediction with the ability to utilize both spatial and temporal related information. The approach adopts two forecasts as basic models and then uses a probabilistic model selection method, random forest classification, to combine the two outputs to achieve a better forecast. In the experiments, we compare the proposed model with four other prediction models, i.e., autoregressive-moving-average, neural networks, support vector regression, and averaging ensemble model, as well as the basic models. The results indicate that the proposed approach outperforms the others in most cases. The origin-destination flows extracted from smart-card data can be successfully exploited to describe different metro travel patterns. And the framework proposed here, especially the probabilistic combination method, can improve the performance of short-term transportation prediction.


Transport ◽  
2011 ◽  
Vol 26 (1) ◽  
pp. 5-10 ◽  
Author(s):  
Qian Chen ◽  
Wenquan Li ◽  
Jinhuan Zhao

Transit flow is the basement of transit planning and scheduling. The paper presents a new transit flow prediction model based on Least Squares Support Vector Machine (LS-SVM). With reference to the theory of Support Vector Machine and Genetic Algorithm, a new short-term passenger flow prediction model is built employing LSSVM, and a new evaluation indicator is used for presenting training permanence. An improved genetic algorithm is designed by enhancing crossover and variation in the use of optimizing the penalty parameter γ and kernel parameter s in LS-SVM. By using this method, passenger flow in a certain bus route is predicted in Changchun. The obtained result shows that there is little difference between actual value and prediction, and the majority of the equal coefficients of a training set are larger than 0.90, which shows the validity of the approach. Santrauka Tranzito srautas yra tranzito planavimo ir eismo tvarkaraščių sudarymo pagrindas. Straipsnis pateikia naują tranzitinio srauto prognozavimo modelį, grindžiamą mažiausių kvadratų atraminių vektorių metodu (Least Squares Support Vector machine, LS-SVm). Remiantis atraminių vektorių metodu (Support Vector machine) ir genetiniu algoritmu (Genetic Algorithm), sudarytas naujas trumpalaikis keleivių srauto prognozavimo modelis, pasitelkiant LS-SVM ir pristatomas naujas vertinimo rodiklis. Taikant naują metodą prognozuojamas keleivių srautas konkrečiame autobuso maršrute Čangčuno mieste Kinijoje. Gautos prognozės rezultatai lyginami su faktiniais. Резюме Транзитный поток – основной фактор при планировании транзита и составлении расписаний движения. В статье представлена новая модель прогноз*а транзитного потока, основанная на методе опорных векторов с квадратичной функцией потерь (Least Squares Support Vector machine – LS-SVm). Представленный новый метод используется для прогноза потока пассажиров на конкретном автобусном маршруте города Чаньчуня (Китай). Результаты прогноза сравниваются с фактическими результатами.


Sign in / Sign up

Export Citation Format

Share Document