Thermal characteristics investigation of a high-speed railway tunnel by field monitoring in Northeast of China

2021 ◽  
pp. 100615
Author(s):  
Haiqiang Jiang ◽  
Fujun Niu ◽  
Qinguo Ma ◽  
Wangtao Jiang ◽  
He Hu ◽  
...  
Author(s):  
Haiqiang Jiang ◽  
Fujun Niu ◽  
Wangtao Jiang ◽  
Li Cheng ◽  
Yongdong Li ◽  
...  

Abstract piston action describes the phenomenon that air at the train nose is pushed forward by the increased pressure and air at the train rear is drawn forward by the decreased pressure when a train passes through a tunnel. The changes of pressure can affect the thermal environment inside the tunnel, and further cause frost damage. In this paper, a fluid-thermal-solid coupled numerical model considering piston action is developed. A high-speed railway tunnel in the northeast of China is taken as an example to explore the temperature distribution laws with computational fluid dynamic (CFD). Afterwards, the effects of air temperature and train velocity on temperature distribution are analyzed. The results show that the piston action can enhance the heat transfer between cold air outside the tunnel and tunnel structure, and can cause more serious frost damage especially at the entrance and exit. The temperature distribution is characterized by three zones, including disturbed zones at two sides of tunnel and undisturbed zone at tunnel middle. The freezing length is closely related to air temperature and train velocity. And also, the lengths are different at vault and rail of tunnel portal, which indicates that the anti-freezing measure should be different at these positions considering the cost. This paper can provide some reference for determining the anti-freezing fortified length of tunnels in cold regions.


2020 ◽  
Vol 79 (5) ◽  
pp. 2201-2212
Author(s):  
Shunhua Zhou ◽  
Zhiyao Tian ◽  
Honggui Di ◽  
Peijun Guo ◽  
Longlong Fu

2014 ◽  
Vol 716-717 ◽  
pp. 342-346
Author(s):  
Xiao Jun Zhou ◽  
Bo Jiang ◽  
Yue Feng Zhou ◽  
Yu Yu

On the basis of different landform and multifarious topography in rugged mountainous area in southwest China, typical tunnel portals for single track tunnels in a new high speed railway line have been presented in the paper. The portal comprises headwall, shed tunnel, bridge abutment and its support. Portal with headwall is suitable for tunnel to resist front earth pressure on high and abrupt slope. Shed tunnel is placed in front of headwall so as to prevent rockfall; its outward part is built into a flared one. Meanwhile, the installation of bridge and its abutment are also included in the portal according to landform in the paper.


2003 ◽  
Vol 87 (7) ◽  
pp. 15-21
Author(s):  
Bert Snijder ◽  
Jan Faber ◽  
Rinus Van Ommeren

2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Ding Youliang ◽  
Wang Gaoxin

Studies on dynamic impact of high-speed trains on long-span bridges are important for the design and evaluation of high-speed railway bridges. The use of the dynamic load factor (DLF) to account for the impact effect has been widely accepted in bridge engineering. Although the field monitoring studies are the most dependable way to study the actual DLF of the bridge, according to previous studies there are few field monitoring data on high-speed railway truss arch bridges. This paper presents an evaluation of DLF based on field monitoring and finite element simulation of Nanjing DaShengGuan Bridge, which is a high-speed railway truss arch bridge with the longest span throughout the world. The DLFs in different members of steel truss arch are measured using monitoring data and simulated using finite element model, respectively. The effects of lane position, number of train carriages, and speed of trains on DLF are further investigated. By using the accumulative probability function of the Generalized Extreme Value Distribution, the probability distribution model of DLF is proposed, based on which the standard value of DLF within 50-year return period is evaluated and compared with different bridge design codes.


Sign in / Sign up

Export Citation Format

Share Document