Effect of friction on combined radial and axial ring rolling process

2014 ◽  
Vol 73 ◽  
pp. 117-127 ◽  
Author(s):  
Xinghui Han ◽  
Lin Hua
2008 ◽  
Vol 575-578 ◽  
pp. 367-372 ◽  
Author(s):  
L.G. Guo ◽  
He Yang

Nowadays, 3D-FE Modeling and simulation is an indispensable method for the optimum design and precise control of radial-axial ring rolling process for its complexities. In this paper, the unique forming characteristics of radial-axial ring rolling have first been summarized, and then some key technologies for 3D-FE modeling of the process have been presented and their solution schemes have been given out, lastly the modeling and simulation of radial-axial ring rolling process have been realized using elastic-plastic dynamic explicit procedure under ABAQUS environment. The work provides an important basis and platform for the future investigations, such as forming mechanism and laws, process optimum design and precise control.


2018 ◽  
Vol 138-139 ◽  
pp. 17-33 ◽  
Author(s):  
Luca Quagliato ◽  
Guido A. Berti ◽  
Dongwook Kim ◽  
Naksoo Kim

2016 ◽  
Vol 29 (3) ◽  
pp. 831-842 ◽  
Author(s):  
Xinglin Zhu ◽  
Dong Liu ◽  
Yanhui Yang ◽  
Yang Hu ◽  
Yong Zheng

2013 ◽  
Vol 690-693 ◽  
pp. 2307-2310
Author(s):  
Ping Zhen Zhou ◽  
Li Wen Zhang ◽  
Sen Dong Gu ◽  
Hong Tao Duan ◽  
Li Hong Teng

The process parameters including the mandrel structure of radial-axial ring rolling is in close relationship with the forming defects such as over-high axial spread and the folding defect in the connecting part of the big and small ring. In this paper, a 3D rigid-plastic and coupled thermal-mechanical finite-element model (FEM) of radial-axial ring rolling for large-scale T-sectioned ring was developed using commercial software of DEFORM-3D. By changing the chamfer radius of mandrel's work roll, the effects of mandrel structure on the height of axial spread which considerably affects the stability of the ring rolling process were investigated. The folding defect was also simulated. The numerical simulation results showed that with the decrement of the chamfer radius r, the metal increasingly accumulated in the big ring and the axial spread height increased. Consequently, the ring rolling process became unstable. Also, the folding angle augmented.


Author(s):  
Shuiyuan Tang ◽  
Jiping Lu ◽  
Hongli Fan ◽  
Ruizhao Du ◽  
Zhonghua Jian ◽  
...  

2019 ◽  
Vol 6 ◽  
pp. 20
Author(s):  
Xuechao Li ◽  
Lianggang Guo ◽  
Yifan Wang ◽  
Lei Liang

The microstructures of hard-to-deform materials such as titanium alloy are very sensitive to temperature change in hot working process. During ring rolling process, unreasonable rolling paths will lead to drastic temperature change in local region of ring, thus damaging the microstructure and performance of rolled ring. This work proposes a method for designing the rolling paths which could accurately control the ring temperature by target-temperature driven intelligent FE simulation. The main idea of target-temperature driven intelligent simulation is introduced. An intelligent 3D-FE model for TA15 titanium alloy ring rolling is established under ABAQUS/Explicit environment. The rolling paths under different initial conditions are obtained by intelligent FE simulations. The influence rule of initial conditions on rolling paths is revealed. The temperature control effects and change under different initial conditions are discussed. Considering the temperature control effects, a feasible range of initial ring temperature is suggested. Using the proposed method, the quick and accurate design for the rolling paths in radial-axial ring rolling process is realized. It is of great significance for the design and optimization of rolling paths and the accurate regulation of ring temperature in actual production.


Sign in / Sign up

Export Citation Format

Share Document