Set-up of radial–axial ring-rolling process: Process worksheet and ring geometry expansion prediction

2015 ◽  
Vol 99 ◽  
pp. 58-71 ◽  
Author(s):  
G.A. Berti ◽  
L. Quagliato ◽  
M. Monti
2011 ◽  
Vol 189-193 ◽  
pp. 589-594
Author(s):  
Ji Ping Lu ◽  
Jian Hua Zuo ◽  
Shui Yuan Tang ◽  
Yue Guang Wang

During the rolling process of big size parts, crinkle and hollows often appear in the surfaces. The reason of producing the defects is that the motions of the rolling mill tool are not consistent with the deformation of the part. On the basis of the principle of radial-axial ring rolling, a dynamics model is put forward. The relationship between part deformation and motion parameters is set up. The stress and strain of the part are simulated in the Finite Element Method by DEFORM software. A ring rolling process curve is defined. The rolling process is controlled by the curve. It is able to make the deformation of the part be consistent with the process parameters, and improve the product quality.


2008 ◽  
Vol 575-578 ◽  
pp. 367-372 ◽  
Author(s):  
L.G. Guo ◽  
He Yang

Nowadays, 3D-FE Modeling and simulation is an indispensable method for the optimum design and precise control of radial-axial ring rolling process for its complexities. In this paper, the unique forming characteristics of radial-axial ring rolling have first been summarized, and then some key technologies for 3D-FE modeling of the process have been presented and their solution schemes have been given out, lastly the modeling and simulation of radial-axial ring rolling process have been realized using elastic-plastic dynamic explicit procedure under ABAQUS environment. The work provides an important basis and platform for the future investigations, such as forming mechanism and laws, process optimum design and precise control.


2018 ◽  
Vol 138-139 ◽  
pp. 17-33 ◽  
Author(s):  
Luca Quagliato ◽  
Guido A. Berti ◽  
Dongwook Kim ◽  
Naksoo Kim

2016 ◽  
Vol 29 (3) ◽  
pp. 831-842 ◽  
Author(s):  
Xinglin Zhu ◽  
Dong Liu ◽  
Yanhui Yang ◽  
Yang Hu ◽  
Yong Zheng

2013 ◽  
Vol 690-693 ◽  
pp. 2307-2310
Author(s):  
Ping Zhen Zhou ◽  
Li Wen Zhang ◽  
Sen Dong Gu ◽  
Hong Tao Duan ◽  
Li Hong Teng

The process parameters including the mandrel structure of radial-axial ring rolling is in close relationship with the forming defects such as over-high axial spread and the folding defect in the connecting part of the big and small ring. In this paper, a 3D rigid-plastic and coupled thermal-mechanical finite-element model (FEM) of radial-axial ring rolling for large-scale T-sectioned ring was developed using commercial software of DEFORM-3D. By changing the chamfer radius of mandrel's work roll, the effects of mandrel structure on the height of axial spread which considerably affects the stability of the ring rolling process were investigated. The folding defect was also simulated. The numerical simulation results showed that with the decrement of the chamfer radius r, the metal increasingly accumulated in the big ring and the axial spread height increased. Consequently, the ring rolling process became unstable. Also, the folding angle augmented.


2013 ◽  
Vol 762 ◽  
pp. 354-359 ◽  
Author(s):  
Thomas Henke ◽  
Gerhard Hirt ◽  
Markus Bambach

Ring rolling is an incremental bulk forming process. Hence, the process consists of a large number of alternating deformations and dwell steps. For accurate calculations of material flow and thus ring geometry and rolling forces in hot ring rolling processes, it seems necessary to consider material softening due to static and post dynamic recrystallization which could occur between two deformation steps. In addition, due to the large number of cycles, the modeling results, especially the prediction of grain size, can easily be affected by uncertainties in the input data. However, for small rings and ring material with slow recrystallization kinetics, the interpass times can be short compared to the softening kinetics and the effect of softening can be so small, that microstructure evolution and the description of the materials flow behavior can be de-coupled. In this paper, a semi-empirical JMAK-based model for a stainless steel (1.4301/ X5CrNi18-9/ AISI304) is presented and evaluated by the use of experiments and other investigations published in [1],[2]. Finite Element (FE) simulations of a ring rolling process with a high number of ring revolutions and thus multiple, incremental forming steps were conducted based on ring rolling experiments. The FE simulation results were validated with the experimentally derived rolling force and evolution of ring diameter. The microstructure evolution was calculated in a post processing step considering the investigated evolution of strain and temperature. In this calculation the interrelations between the fraction of dynamically recrystallized microstructure, the evolution of post-dynamically recrystallized microstructure and the final grain size have been considered. Both, the calculated final microstructure and the evolution of rolling force and ring geometry calculated stand in good agreement with the experimental investigations.


Author(s):  
Shuiyuan Tang ◽  
Jiping Lu ◽  
Hongli Fan ◽  
Ruizhao Du ◽  
Zhonghua Jian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document