target temperature
Recently Published Documents


TOTAL DOCUMENTS

324
(FIVE YEARS 87)

H-INDEX

24
(FIVE YEARS 5)

Author(s):  
Karthika Mohanan ◽  
Sujit Jogwar

This paper presents a novel energy flow redistribution methodology to achieve optimal operation of heat exchanger networks (HENs). The proposed method aims to manipulate the propagation path of a disturbance through the network to reduce its impact on utility consumption. Specifically, an optimization problem is formulated to generate new duty targets for heat exchangers of the network when a disturbance is encountered. Subsequently, a feedback control system is designed to track these targets by manipulating bypasses around the process heat exchangers. The effectiveness of the proposed framework is illustrated with the help of three benchmark examples. The proposed approach can handle disturbances in inlet as well as target temperature, inlet flow and heat transfer coefficient of individual heat exchangers.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012030
Author(s):  
S P Sakti ◽  
F J Kusuma ◽  
T Putro ◽  
Abdurrouf

Abstract Thermal Cycler is the main part of the Polymerase Chain Reaction (PCR), which becoming a gold standard for Covid-19 diagnosis. The virus multiplication in an order to a detectable concentration is done by placing the virus solution at a deterministic temperature cycle. The solution is placed in a small tube inserted in a temperature block. Temperature distribution of the thermal block is important to make all the tube with sample treated at the same at desired target temperature. Study on the thermal block made of aluminium 7075 was simulated using fluid dynamic finite element method. Heating and colling to the target temperature was done by providing heat source and heat absorber. The temperature distribution on the surface was mapped. The temperature gradient perpendicular to the heat source was calculated. Assuming the environment of the thermal block was still air, the heating and cooling speed at given heat source and heat removal were calculated using the model. The temperature gradient from the top surface to the bottom surface is less than 2.5°C. The temperature difference among point at the surface is less than 0.1°C.


2021 ◽  
Author(s):  
Danielle K. Bayoro ◽  
Herman Groepenhoff ◽  
Daniel Hoolihan ◽  
Edward A. Rose ◽  
Michael J. Pedro ◽  
...  

Abstract Background Perioperative hypothermia is a common occurrence, particularly with the elderly and pediatric age groups. Hypothermia is associated with an increased risk of perioperative complications. One method of preventing hypothermia is warming the infused fluids given during surgery. The enFlow™ intravenous fluid warmer has recently been reintroduced with a parylene coating on its heating blocks. In this paper, we evaluated the impact of the parylene coating on the new enFlow’s fluid warming capacity. Methods Six coated and six uncoated enFlow cartridges were used. A solution of 10% propylene glycol and 90% distilled H2O was infused into each heating cartridge at flow rates of 2, 10, 50, 150, and 200 ml/min. The infused fluid temperature was set at 4°C, 20°C, and 37°C. Output temperature was recorded at each level. Data for analysis was derived from 18 runs at each flow rate (six cartridges at three temperatures). Results The parylene coated fluid warming cartridge delivered very stable output of 40°C temperatures at flow rates of 2, 10, and 50 ml/min regardless of the temperature of the infusate. At higher flow rates, the cartridges were not able to achieve the target temperature with the colder fluid. Both cartridges performed with similar efficacy across all flow rates at all temperatures. Conclusions At low flow rates, the parylene coated enFlow cartridges was comparable to the original uncoated cartridges. At higher flow rates, the coated and uncoated cartridges were not able to achieve the target temperature. The parylene coating on the aluminum heating blocks of the new enFlow intravenous fluid warmer does not negatively affect its performance compared to the uncoated model.


Author(s):  
Walter Petermichl ◽  
Alois Philipp ◽  
Karl-Anton Hiller ◽  
Maik Foltan ◽  
Bernhard Floerchinger ◽  
...  

Abstract Background Extracorporeal cardiopulmonary resuscitation (ECPR) performed at the emergency scene in out-of-hospital cardiac arrest (OHCA) can minimize low-flow time. Target temperature management (TTM) after cardiac arrest can improve neurological outcome. A combination of ECPR and TTM, both implemented as soon as possible on scene, appears to have promising results in OHCA. To date, it is still unknown whether the implementation of TTM and ECPR on scene affects the time course and value of neurological biomarkers. Methods 69 ECPR patients were examined in this study. Blood samples were collected between 1 and 72 h after ECPR and analyzed for S100, neuron-specific enolase (NSE), lactate, D-dimers and interleukin 6 (IL6). Cerebral performance category (CPC) scores were used to assess neurological outcome after ECPR upon hospital discharge. Resuscitation data were extracted from the Regensburg extracorporeal membrane oxygenation database and all data were analyzed by a statistician. The data were analyzed using non-parametric methods. Diagnostic accuracy of biomarkers was determined by area under the curve (AUC) analysis. Results were compared to the relevant literature. Results Non-hypoxic origin of cardiac arrest, manual chest compression until ECPR, a short low-flow time until ECPR initiation, low body mass index (BMI) and only a minimal need of extra-corporeal membrane oxygenation support were associated with a good neurological outcome after ECPR. Survivors with good neurological outcome had significantly lower lactate, IL6, D-dimer, and NSE values and demonstrated a rapid decrease in the initial S100 value compared to non-survivors. Conclusions A short low-flow time until ECPR initiation is important for a good neurological outcome. Hypoxia-induced cardiac arrest has a high mortality rate even when ECPR and TTM are performed at the emergency scene. ECPR patients with a higher BMI had a worse neurological outcome than patients with a normal BMI. The prognostic biomarkers S100, NSE, lactate, D-dimers and IL6 were reliable indicators of neurological outcome when ECPR and TTM were performed at the emergency scene.


2021 ◽  
Vol 243 ◽  
pp. 114380
Author(s):  
Yu-Dong Zhu ◽  
Zhao-Rui Peng ◽  
Guan-Bang Wang ◽  
Xin-Rong Zhang

2021 ◽  
Vol 10 (17) ◽  
pp. 3943
Author(s):  
Filippo Sanfilippo ◽  
Luigi La Via ◽  
Bruno Lanzafame ◽  
Veronica Dezio ◽  
Diana Busalacchi ◽  
...  

Target temperature management (TTM) in cardiac arrest (CA) survivors is recommended after hospital admission for its possible beneficial effects on survival and neurological outcome. Whether a lower target temperature (i.e., 32–34 °C) improves outcomes is unclear. We conducted a systematic review and meta-analysis on Pubmed and EMBASE to evaluate the effects on mortality and neurologic outcome of TTM at 32–34 °C as compared to controls (patients cared with “actively controlled” or “uncontrolled” normothermia). Results were analyzed via risk ratios (RR) and 95% confidence intervals (CI). Eight randomized controlled trials (RCTs) were included. TTM at 32–34 °C was compared to “actively controlled” normothermia in three RCTs and to “uncontrolled” normothermia in five RCTs. TTM at 32–34 °C does not improve survival as compared to normothermia (RR:1.06 (95%CI 0.94, 1.20), p = 0.36; I2 = 39%). In the subgroup analyses, TTM at 32–34 °C is associated with better survival when compared to “uncontrolled” normothermia (RR: 1.31 (95%CI 1.07, 1.59), p = 0.008) but shows no beneficial effects when compared to “actively controlled” normothermia (RR: 0.97 (95%CI 0.90, 1.04), p = 0.41). TTM at 32–34 °C does not improve neurological outcome as compared to normothermia (RR: 1.17 (95%CI 0.97, 1.41), p = 0.10; I2 = 60%). TTM at 32–34 °C increases the risk of arrhythmias (RR: 1.35 (95%CI 1.16, 1.57), p = 0.0001, I2 = 0%). TTM at 32–34 °C does not improve survival nor neurological outcome after CA and increases the risk of arrhythmias.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Michela Masè ◽  
Alessandro Micarelli ◽  
Marika Falla ◽  
Ivo B. Regli ◽  
Giacomo Strapazzon

Abstract Background Target temperature management (TTM) is suggested to reduce brain damage in the presence of global or local ischemia. Prompt TTM application may help to improve outcomes, but it is often hindered by technical problems, mainly related to the portability of cooling devices and temperature monitoring systems. Tympanic temperature (TTy) measurement may represent a practical, non-invasive approach for core temperature monitoring in emergency settings, but its accuracy under different TTM protocols is poorly characterized. The present scoping review aimed to collect the available evidence about TTy monitoring in TTM to describe the technique diffusion in various TTM contexts and its accuracy in comparison with other body sites under different cooling protocols and clinical conditions. Methods The scoping review was conducted following the guidelines of the Preferred Reporting Items for Systematic Review and Meta-Analysis extension for scoping reviews (PRISMA-ScR). PubMed, Scopus, and Web of Science electronic databases were systematically searched to identify studies conducted in the last 20 years, where TTy was measured in TTM context with specific focus on pre-hospital or in-hospital emergency settings. Results The systematic search identified 35 studies, 12 performing TTy measurements during TTM in healthy subjects, 17 in patients with acute cardiovascular events, and 6 in patients with acute neurological diseases. The studies showed that TTy was able to track temperature changes induced by either local or whole-body cooling approaches in both pre-hospital and in-hospital settings. Direct comparisons to other core temperature measurements from other body sites were available in 22 studies, which showed a faster and larger change of TTy upon TTM compared to other core temperature measurements. Direct brain temperature measurements were available only in 3 studies and showed a good correlation between TTy and brain temperature, although TTy displayed a tendency to overestimate cooling effects compared to brain temperature. Conclusions TTy was capable to track temperature changes under a variety of TTM protocols and clinical conditions in both pre-hospital and in-hospital settings. Due to the heterogeneity and paucity of comparative temperature data, future studies are needed to fully elucidate the advantages of TTy in emergency settings and its capability to track brain temperature.


Sign in / Sign up

Export Citation Format

Share Document