Microstructure and high temperature reciprocating sliding wear properties of MoSi2/TiC/γ-Ni composite coating in-situ synthesized by co-axial powder feeding plasma transferred arc cladding

2019 ◽  
Vol 129 ◽  
pp. 82-91 ◽  
Author(s):  
Zhi-Cheng Feng ◽  
Yuan-Fu Liu ◽  
Yong Li ◽  
Guang-Bao Sun ◽  
Zheng Zhang ◽  
...  
2011 ◽  
Vol 675-677 ◽  
pp. 783-787 ◽  
Author(s):  
Li Mei Wang ◽  
Jun Bo Liu ◽  
Chi Yuan

In situ synthesized Fe-Cr-C-TiC high-chromium Fe-based ceramic composite coating was fabricated on substrate of Q235 steel by plasma transferred arc (PTA) weld-surfacing process using the mixture of ferrotitanium, ferrochromium, ferroboron and ferrosilicium powders. The microstructure and wear properties of the composite coating were investigated by XRD, SEM, EDS, microhardness tester and wear tester. Results show that the coating consists of TiC, (Cr,Fe)7C3 and austenite. The coating is metallurgically bonded to the Q235 steel substrate. TiC particles formed by PTA weld-surfacing process present cubic, dendrite and flower-like shape. The wear resistance of the composite coating is approximately 11 times higher than that of the base body Q235. As the load increases, the wear mass loses slowly, which demonstrates the composite coating has excellent load character.


Sign in / Sign up

Export Citation Format

Share Document