gray cast iron
Recently Published Documents


TOTAL DOCUMENTS

658
(FIVE YEARS 173)

H-INDEX

24
(FIVE YEARS 6)

Author(s):  
Nataliia Lalazarova ◽  
Оlga Afanasieva ◽  
Olena Popova ◽  
Oleksiy Dmytrenko

One of the weak spots that reduce the guaranteed operating time of centrifugal pumps is the assembly that includes the seal and protective sleeves. The main purpose of the bushings in the rotor kit is to protect the shaft from corrosion, erosion and wear. The sleeve operates under abrasive wear conditions by packing elements and abrasive particles that get into the liquid pumped by the pump. The protective sleeves made of gray cast iron do not meet the service life in connection with accelerated surface wear. Goal. The purpose of the work is to ensure high wear resistance of cast iron pump parts by heat treatment. Method. The chemical composition was determined on a portable laser analyzer Laser Z200 C +. The structure was studied using an optical microscope. The wear was investigated by the roller-block method on a friction machine. Surface quenching was carried out with a high-frequency lamp generator in a single-turn inductor. Results. The microstructure of gray cast iron as cast consists of pearlite, ferite, double phosphide eutectic and inclusions of lamellar graphite. Microhardness of small-lamellar pearlite is Н50 = 1550–2220 MPa, microhardness of phosphide eutectic is Н50 = 6500–8000 MPa. Surface induction quenching by high-frequency currents followed by low tempering is an effective way to increase the wear resistance of cast iron products of small cross-section and does not cause warping. Cast iron for surface quenching should have a pearlite structure, and graphite should be contained in the form of small inclusions. The optimal heating temperature for induction hardening was determined as 900 °С, which made it possible to obtain the microstructure of the hardened layer – martensite, double phosphide eutectic and graphite. Scientific novelty. The developed modes of surface quenching make it possible to preserve a double phosphide eutectic in the structure of the surface layer, which makes it possible to obtain high hardness and wear resistance of the hardened layer. Practical significance. Surface induction quenching with low tempering of cast gray iron increased its wear resistance by 2,4 times. The previous normalization had practically no effect on the durability of cast iron, since its structure contains less than 10% ferrite.


2021 ◽  
Vol 36 (6) ◽  
pp. 903-910
Author(s):  
Yihong Zhao ◽  
Qianyu Chen ◽  
Zhiwei Zheng ◽  
Pei Cao ◽  
Ziyu Gong ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6762
Author(s):  
Mirosław Cholewa ◽  
Tomasz Wróbel ◽  
Czesław Baron ◽  
Marcin Morys

The paper discusses a potential composite produced using the casting method, where the matrix is gray cast iron with flake graphite. The reinforcement is provided by granular carborundum (β-SiC). The article presents model studies aimed at identifying the phenomena at the contact boundary resulting from the interaction of the liquid matrix with solid reinforcement particles. The scope of the research included, primarily, the metallographic analysis of the microstructure of the resulting composite, carried out by using light (LOM) and scanning electron (SEM) microscopy with energy dispersive X-ray spectroscopy (EDS) analysis. The occurrence of metallic phases in the boundary zone was indicated, the contents and morphology of which can be optimized in order to achieve favorable functional properties, mainly the tribological properties of the composite. In addition, the results obtained confirm the possibility of producing similar composites based on selected iron alloys.


2021 ◽  
Vol 12 (6) ◽  
pp. 1526-1533
Author(s):  
N. A. Khlyamkov ◽  
S. M. Balakin ◽  
L. A. Belyaeva ◽  
V. A. Petrov

2021 ◽  
pp. 107343
Author(s):  
Weitao Sun ◽  
Wang Bin ◽  
Liu Xiaoliang ◽  
Wang Yuqian ◽  
Zhang Jian

Alloy Digest ◽  
2021 ◽  
Vol 70 (11) ◽  

Abstract Meehanite GE200 is an intermediate-tensile-strength gray cast iron that has a minimum tensile strength of 200 MPa (29 ksi), when determined on test pieces machined from separately cast, 30 mm (1.2 in.) diameter test bars. This material is generally used for smaller parts with wall thicknesses above 5 mm (3/16 in.). It has excellent fluidity, no tendency towards hard edges and a uniformly fine structure with small proportions of ferrite and is, therefore, readily machinable. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on casting, heat treating, machining, and joining. Filing Code: CI-87. Producer or source: Meehanite Metal Corporation.


2021 ◽  
Vol 4 (1) ◽  
pp. 205-211
Author(s):  
Recep Akyüz ◽  
Ekrem Altuncu ◽  
Ozan Demirdalmiş ◽  
Bilgi Çengelli

Braking is a process which transform the kinetic energy of the rotor into heat energy. During the braking phase, the frictional heat generated at the interface rotor–pad can lead to high temperatures (> 600 oC). In long-term frequent use of braking, increased temperature causes disc distortions, heat cracks, and causes degradation of the pad material. This creates a risk in the reduction of rotor-pad interface friction and loss of brake performance under safe driving conditions. In this study, the thermal monitoring of the thermal spray coated rotor was investigated and the variation of the friction coefficient and wear related thickness were measured. In addition, changes in torque forces at increasing temperatures were also evaluated.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
S. Ananth ◽  
P. Sivaprakasam ◽  
J. Udaya Prakash ◽  
P. Maheandera Prabu ◽  
Varatharaju Perumal ◽  
...  

This research investigates the tribological behavior of gray cast iron against EN31 steel under lubricated conditions. The most typical lubricated sliding phenomena are the reduction of wear on both the sliding surfaces and any one of the critical surfaces. Static and hydrodynamic wear can be reduced based on fluid properties or the accessibility of fluid between the surfaces. The oil’s viscosity or content of the hydrocarbon and additives present in the oil plays a major role in controlling the wear of reciprocating surfaces. Therefore, this research work focused on metal-to-metal contact wear under the influence of lubricating oil (40 pride oil). The Taguchi method was used to select the sliding parameter combinations. Lubricated sliding resulted in a relatively reduced order of friction coefficient, attributable to better load distribution due to the formation of the lubricant film.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5531
Author(s):  
Edouard A. T. Davin ◽  
Anne-Lise Cristol ◽  
Arnaud Beaurain ◽  
Philippe Dufrénoy ◽  
Neomy Zaquen

In this study, through severe reduced-scale braking tests, we investigate the wear and integrity of organic matrix brake pads against gray cast iron (GCI) discs. Two prototype pad materials are designed with the aim of representing a typical non-metal NAO and a low-steel (LS) formulation. The worn surfaces are observed with SEM. The toughness of the pad materials is tested at the raw state and after a heat treatment. During braking, the LS-GCI disc configuration produces heavy wear. The friction parts both keep their macroscopic integrity and wear appears to be homogeneous. The LS pad is mostly covered by a layer of solid oxidized steel. The NAO-GCI disc configuration wears dramatically and cannot reach the end of the test program. The NAO pad suffers many deep cracks. Compacted third body plateaus are scarce and the corresponding disc surface appears to be very heterogeneous. The pad materials both show similar strength at the raw state and similar weakening after heat treatment. However, the NAO material is much more brittle than the LS material in both states, which seems to favor the growth of cracks. The observations of crack faces suggest that long steel fibers in the LS material palliate the brittleness of the matrix, even after heat damage.


2021 ◽  
Vol 27 (3) ◽  
pp. 127-132
Author(s):  
Agus Yulianto ◽  
Rudy Soenoko ◽  
Wahyono Suprapto ◽  
As’ad Sonief

This study aims to investigate the thermal conditions of the molds, changes in microstructure and hardness of casting products using sand mold and permanent mold. The use of sand mold and permanent mold results in different cooling rates. Thermal analysis was performed using a thermocouple to obtain a temperature versus time curve. Metallographic observations were carried out using a Scanning Electron Microscope equipped with Energy-Dispersive X-ray Spectroscopy. The Vickers hardness test was carried out in three areas with different thicknesses. The results showed a constant temperature at 691 oC where the eutectoid phase reaction occurred. Testing with sand mold showed that cast iron with flake graphite was finer and spreader than graphite in cast iron produced by permanent mold. Meanwhile, gray cast iron from a casting process with a permanent mold has a higher hardness than gray cast iron from a casting process using a sand mold.


Sign in / Sign up

Export Citation Format

Share Document