Is it possible to extract the pressure dependence of low-shear viscosity from EHL friction? Revised May, 2020

2020 ◽  
Vol 151 ◽  
pp. 106454
Author(s):  
Scott Bair
1963 ◽  
Vol 1 (7) ◽  
pp. 381-384 ◽  
Author(s):  
D. Poller ◽  
A. M. Kotliar ◽  
R. L. Kruse

2007 ◽  
Vol 280-283 ◽  
pp. 1035-1038 ◽  
Author(s):  
Tae Young Yang ◽  
Young Min Park ◽  
Gun Dae Lee ◽  
Seog Young Yoon ◽  
Ron Stevens ◽  
...  

The sedimentation density significantly decreased after addition of dispersant; the effect was more pronounced with pure alumina, as compared with SiC-containing slurry. With further addition of surfactant, the sedimentation density increased somewhat, but decreased with binderadditions. The suspension viscosity generally behaved in an opposite manner to the sedimentation density, i.e., low sedimentation density gave high low-shear viscosity, indicative of high structure formation in the suspended particles. Shear rate rheological measurements showed continuous shear thinning behavior.


2003 ◽  
Vol 125 (2) ◽  
pp. 260-266 ◽  
Author(s):  
Peter A. Kottke ◽  
Scott S. Bair ◽  
Ward O. Winer

The rheological significance of a state of hydrostatic tension was investigated. A method for measuring the limiting low shear viscosity of liquids under tension was developed. The ability of nine liquids to withstand tension was verified, and the magnitudes of tension achievable through different methods were compared. The use of viscosity data from liquids under tension to more accurately determine the initial pressure viscosity coefficient was investigated. The continuity of the pressure viscosity coefficient across absolute zero pressure was verified.


Sign in / Sign up

Export Citation Format

Share Document