Effect of titanium implant surface nanoroughness and calcium phosphate low impregnation on bone cell activity in vitro

Author(s):  
Vincenzo Bucci-Sabattini ◽  
Clara Cassinelli ◽  
Paulo G. Coelho ◽  
Alberto Minnici ◽  
Alberto Trani ◽  
...  
2019 ◽  
Vol 30 (S19) ◽  
pp. 213-213
Author(s):  
Sergio Gehrke ◽  
Leticia Pèrez‐DÌaz ◽  
Patricia Mazon ◽  
Piedad N. de Aza

2014 ◽  
Vol 2 (22) ◽  
pp. 3549 ◽  
Author(s):  
Xiaojing Wang ◽  
Guowei Wang ◽  
ShouQin Shan ◽  
Guangyan Hui ◽  
Tingkai Guo ◽  
...  

2007 ◽  
Vol 361-363 ◽  
pp. 749-752
Author(s):  
J. Strnad ◽  
Jan Macháček ◽  
Z. Strnad ◽  
C. Povýšil ◽  
Marie Strnadová

This study was carried out to assess the bone response to alkali-modified titanium implant surface (Bio surface), using histomorphometric investigation on an animal model. The mean net contribution of the Bio surface to the increase in bone implant contact (BIC) with reference to the turned, machined surface was evaluated at 7.94 % (BIC/week), within the first five weeks of healing. The contribution was expressed as the difference in the osseointegration rates ( BIC/'healing time) between the implants with alkali modified surface (Bio surface) and those with turned, machined surface. The surface characteristics that differed between the implant surfaces, i.e. surface morphology, specific surface area, contact angle, hydroxylation/hydration, may represent factors that influence the rate of osseointegration.


2015 ◽  
Vol 19 (7) ◽  
pp. 1699-1699 ◽  
Author(s):  
José Luis Calvo-Guirado ◽  
Marta Satorres ◽  
Bruno Negri ◽  
Piedad Ramirez-Fernandez ◽  
Jose Eduardo Maté-Sánchez de Val ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2602
Author(s):  
Aslihan Secgin-Atar ◽  
Gokce Aykol-Sahin ◽  
Necla Asli Kocak-Oztug ◽  
Funda Yalcin ◽  
Aslan Gokbuget ◽  
...  

The aim of our study was to obtain similar surface properties and elemental composition to virgin implants after debridement of contaminated titanium implant surfaces covered with debris. Erbium-doped:yttrium, aluminum, and garnet (Er:YAG) laser, erbium, chromium-doped:yttrium, scandium, gallium, and garnet (Er,Cr:YSGG) laser, curette, and ultrasonic device were applied to contaminated implant surfaces. Scanning electron microscopy (SEM) images were taken, the elemental profile of the surfaces was evaluated with energy dispersive X-ray spectroscopy (EDX), and the surface roughness was analyzed with profilometry. Twenty-eight failed implants and two virgin implants as control were included in the study. The groups were designed accordingly; titanium curette group, ultrasonic scaler with polyetheretherketone (PEEK) tip, Er: YAG very short pulse laser group (100 μs, 120 mJ/pulse 10 Hz), Er: YAG short-pulse laser group (300 μs, 120 mJ/pulse, 10 Hz), Er: YAG long-pulse laser group (600 μs, 120 mJ/pulse, 10 Hz), Er, Cr: YSGG1 laser group (1 W 10 Hz), Er, Cr: YSGG2 laser group (1.5 W, 30 Hz). In each group, four failed implants were debrided for 120 s. When SEM images and EDX findings and profilometry results were evaluated together, Er: YAG long pulse and ultrasonic groups were found to be the most effective for debridement. Furthermore, the two interventions have shown the closest topography of the sandblasted, large grit, acid-etched implant surface (SLA) as seen on virgin implants.


Sign in / Sign up

Export Citation Format

Share Document