Adsorption behaviors of methanol, ethanol, n-butanol, n-hexanol and n-octanol on mica surface studied by atomic force microscopy

2004 ◽  
Vol 458 (1-2) ◽  
pp. 197-202 ◽  
Author(s):  
Li Wang ◽  
Yonghai Song ◽  
Bailin Zhang ◽  
Erkang Wang
2011 ◽  
Vol 47 (17) ◽  
pp. 4974 ◽  
Author(s):  
Shigeto Inoue ◽  
Takayuki Uchihashi ◽  
Daisuke Yamamoto ◽  
Toshio Ando

COSMOS ◽  
2008 ◽  
Vol 04 (02) ◽  
pp. 173-183
Author(s):  
BOON TEE ONG ◽  
PARAYIL KUMARAN AJIKUMAR ◽  
SURESH VALIYAVEETTIL

The present article reviews the self-assembly of oligopeptides to form nanostructures, both in solution and in solid state. The solution structures of the peptides were examined using circular dichroism and dynamic light scattering. The solid state assembly was examined by adsorbing the peptides onto a mica surface and analyzing it using atomic force microscopy. The role of pH and salt concentration on the peptide self-assembly was also examined. Nanostructures within a size range of 3–10 nm were obtained under different conditions.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Zhiwei Wang ◽  
Qi Xiao ◽  
Xuan Song ◽  
Yunfei Wan ◽  
Jie Zhu

The well-organized collagen layers on mica surface have drawn extensive attention for its essential applications and studies on the process of self-assembly as a model system. In this work, collagen extracted from fish scales by acid-base method was used to explore the self-assembly characters, and atomic force microscopy was applied to observe the collagen assembled on mica surface mediated by acetate with four different cations, including K+, Na+, Mg2+, and Ca2+. It showed that cations might influence the interaction between collagen fibrils and mica surface at high ionic concentration. And a similar network structure was acquired with uniform pore size for four kinds of acetates; nearly ranged collagen fibrils in the same direction were collected in Mg2+ solutions, while flat films with some fibrils were achieved in K+ solutions. The Hofmeister series and Collins’ model were adapted to explain the effects of cations and acetate on the self-assembly of collagen. These results and analysis would be helpful for directing the pattern of collagen assembly on a solid surface with a potential application in food science and engineering.


2016 ◽  
Vol 147 (5) ◽  
pp. 865-871 ◽  
Author(s):  
Veronika Horňáková ◽  
Jan Přibyl ◽  
Petr Skládal

Sign in / Sign up

Export Citation Format

Share Document