Influence of injection barrier on the determination of charge-carrier mobility in organic light-emitting diodes by impedance spectroscopy

2008 ◽  
Vol 517 (4) ◽  
pp. 1331-1334 ◽  
Author(s):  
Takayuki Okachi ◽  
Takashi Nagase ◽  
Takashi Kobayashi ◽  
Hiroyoshi Naito
2002 ◽  
Vol 41 (Part 1, No. 4A) ◽  
pp. 2252-2253 ◽  
Author(s):  
Musubu Ichikawa ◽  
Yasuhiro Horiba ◽  
Hiroyuki Nakatani ◽  
Masashi Yamada ◽  
Toshiki Koyama ◽  
...  

2007 ◽  
Vol 91 (14) ◽  
pp. 142106 ◽  
Author(s):  
Shun-Wei Liu ◽  
Jiun-Haw Lee ◽  
Chih-Chien Lee ◽  
Chin-Ti Chen ◽  
Juen-Kai Wang

2021 ◽  
Vol 2 (2) ◽  
pp. 253-273
Author(s):  
Pavel Chulkin

The article demonstrates an original, non-destructive technique that could be used to in situ monitor charge transport in organic light-emitting diodes. Impedance spectroscopy was successfully applied to determine an OLED’s charge carrier mobility and average charge density in the hole- and electron-transport layer in a range of applied voltages. The fabricated devices were composed of two commercially available materials: NPB (N,N′-di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine) and TPBi (2,2′,2″-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole)) as hole- and electron-transport layers, respectively. By varying the thicknesses of the hole-transport layer (HTL) and the electron-transport layer (ETL), correlations between layer thickness and both charge carrier mobility and charge density were observed. A possibility of using the revealed dependencies to predict diode current–voltage characteristics in a wide range of applied voltage has been demonstrated. The technique based on a detailed analysis of charge carrier mobilities and densities is useful for choosing the appropriate transport layer thicknesses based on an investigation of a reference set of samples. An important feature of the work is its impact on the development of fundamental research methods that involve AC frequency response analysis by providing essential methodology on data processing.


2009 ◽  
Vol 94 (4) ◽  
pp. 043301 ◽  
Author(s):  
Takayuki Okachi ◽  
Takashi Nagase ◽  
Takashi Kobayashi ◽  
Hiroyoshi Naito

Sign in / Sign up

Export Citation Format

Share Document