Graphene oxide-Ag nanocomposite: In situ photochemical synthesis and application as a surface-enhanced Raman scattering substrate

2011 ◽  
Vol 520 (1) ◽  
pp. 179-185 ◽  
Author(s):  
Jianli Chen ◽  
Xianliang Zheng ◽  
Huan Wang ◽  
Weitao Zheng
Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 685 ◽  
Author(s):  
Zhen Yin ◽  
Huilin He ◽  
Zhenming Wang ◽  
Xiaoguo Fang ◽  
Chunxiang Xu ◽  
...  

Recently, photochemical synthesis has attracted wide interest on in situ preparing the surface-enhanced Raman scattering (SERS) substrate with excellent performance, especially in a compact space and microfluidic channel. Herein, a facile, green and cost-effective approach to in situ photochemically synthesize silver nanoaggregates is demonstrated for SERS applications. By adjusting the photo-irradiation conditions, the morphologies and sizes of the silver nanoaggregates can be deliberately tailored. The synthesized silver nanoaggregates-based substrates exhibit a highly sensitive and reproducible SERS activity with a low detection limit of 10−8 M for 4-Aminothiophenol detection and relative standard deviation of 12.3%, paving an efficient and promising route for in situ SERS-based rapid detection in the environmental monitoring and food quality control.


Nanoscale ◽  
2015 ◽  
Vol 7 (40) ◽  
pp. 17079-17087 ◽  
Author(s):  
Xiang Zhang ◽  
Chunsheng Shi ◽  
Enzuo Liu ◽  
Jiajun Li ◽  
Naiqin Zhao ◽  
...  

Nitrogen-doped graphene network supported graphene shell encapsulated Cu nanoparticles for surface-enhanced Raman scattering were constructed by in situ chemical vapor deposition.


Nanoscale ◽  
2014 ◽  
Vol 6 (15) ◽  
pp. 9063-9070 ◽  
Author(s):  
Zhi Yong Bao ◽  
Dang Yuan Lei ◽  
Ruibin Jiang ◽  
Xin Liu ◽  
Jiyan Dai ◽  
...  

Surface-enhanced Raman scattering spectroscopy using bifunctional Au@Pt core–shell nanostructures can monitor the catalytic reaction dynamics in real time.


2010 ◽  
Vol 3 (8-9) ◽  
pp. 548-556 ◽  
Author(s):  
Natalia P. Ivleva ◽  
Michael Wagner ◽  
Harald Horn ◽  
Reinhard Niessner ◽  
Christoph Haisch

Sign in / Sign up

Export Citation Format

Share Document