Ultimate nanopatterning of Si substrate using filtered liquid metal alloy ion source-focused ion beam

2013 ◽  
Vol 543 ◽  
pp. 69-73 ◽  
Author(s):  
A. Benkouider ◽  
I. Berbezier ◽  
A. Ronda ◽  
L. Favre ◽  
E. Ruiz Gomes ◽  
...  
2020 ◽  
Vol 11 ◽  
pp. 1742-1749
Author(s):  
Nico Klingner ◽  
Gregor Hlawacek ◽  
Paul Mazarov ◽  
Wolfgang Pilz ◽  
Fabian Meyer ◽  
...  

While the application of focused ion beam (FIB) techniques has become a well-established technique in research and development for patterning and prototyping on the nanometer scale, there is still a large underused potential with respect to the usage of ion species other than gallium. Light ions in the range of m = 1–28 u (hydrogen to silicon) are of increasing interest due to the available high beam resolution in the nanometer range and their special chemical and physical behavior in the substrate. In this work, helium and neon ion beams from a helium ion microscope are compared with ion beams such as lithium, beryllium, boron, and silicon, obtained from a mass-separated FIB using a liquid metal alloy ion source (LMAIS) with respect to the imaging and milling resolution, as well as the current stability. Simulations were carried out to investigate whether the experimentally smallest ion-milled trenches are limited by the size of the collision cascade. While He+ offers, experimentally and in simulations, the smallest minimum trench width, light ion species such as Li+ or Be+ from a LMAIS offer higher milling rates and ion currents while outperforming the milling resolution of Ne+ from a gas field ion source. The comparison allows one to select the best possible ion species for the specific demands in terms of resolution, beam current, and volume to be drilled.


2019 ◽  
Vol 669 ◽  
pp. 215-219
Author(s):  
A. Aissat ◽  
F. Benyettou ◽  
I. Berbezier ◽  
J.P. Vilcot

1992 ◽  
Vol 295 ◽  
Author(s):  
Mikio Takai ◽  
Ryou Mimura ◽  
Hiroshi Sawaragi ◽  
Ryuso Aihara

AbstractA nondestructive three-dimensional RBS/channeling analysis system with an atomic resolution has been designed and is being constructed in Osaka University for analysis of nanostructured surfaces and interfaces. An ultra high-vacuum sample-chamber with a threeaxis goniometer and a toroidal electrostatic analyzer for medium energy ion scattering (MEIS) was combined with a short acceleration column for a focused ion beam. A liquid metal ion source (LMIS) for light metal ions such as Li+ or Be+ was mounted on the short column.A minimum beam spot-size of about 10 nm with a current of 10 pA is estimated by optical property calculation for 200 keV Li+ LMIS. An energy resolution of 4 × 10-3 (AE/E) for the toroidal analyzer gives rise to atomic resolution in RBS spectra for Si and GaAs. This system seems feasible for atomic level analysis of localized crystalline/disorder structures and surfaces.


2012 ◽  
Vol 83 (2) ◽  
pp. 02A511 ◽  
Author(s):  
A. Thorn ◽  
E. Ritter ◽  
F. Ullmann ◽  
W. Pilz ◽  
L. Bischoff ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document