metal alloy
Recently Published Documents


TOTAL DOCUMENTS

950
(FIVE YEARS 180)

H-INDEX

53
(FIVE YEARS 10)

2022 ◽  
Vol 9 ◽  
Author(s):  
Lei Zhang ◽  
Yi Chao ◽  
Kenan Yang ◽  
Daodao Xue ◽  
Shisheng Zhou

A large number of researches on the electroless plating of carbon nanotubes and their applications after plating have emerged, which has attracted more and more attention. In this review article, the existing electroless plating methods for carbon nanotubes were briefly summarized, and the surface coatings were listed and analyzed in detail. At last, the related applications after electroless metal/alloy coatings of carbon nanotubes were discussed in detail. This study aims to provide a reference for the research and improvement of different electroless metals/alloys coatings of carbon nanotubes. After a clear understanding of the electroless metal/alloy coatings of carbon nanotubes, the appropriate coating can be selected according to the actual situation, so that the carbon nanotubes after plating can be used as reinforcement and modification materials for better satisfaction of the needs, and the application of plated carbon nanotubes has reference significance in more fields.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Thabang R Somo ◽  
Kwena D Modibane ◽  
Moegamat W Davids ◽  
Mykhaylo V Lototskyy ◽  
Mpitloane J Hato

2021 ◽  
Author(s):  
Yuanyuan Guo ◽  
Yiming Zou ◽  
Chunyu Cheng ◽  
Leyan Wang ◽  
Riko I Made ◽  
...  

Abstract Metal alloys are usually fabricated by melting constituent metals together or sintering metal alloy particles made by high energy ball milling (mechanical alloying). All these methods only allow for bulk alloys to be formed. This manuscript details a new method of fabricating Rhodium/Iridium (Rh/Ir) metal alloy films using atomic layer deposition (ALD) and rapid Joule heating induced alloying that gives functional thin film alloys, enabling conformal thin films with high aspect ratios on 3D nanostructured substrate. In this work, ALD was used to deposit Rh thin film on an Al2O3 substrate, followed by an Ir overlayer on top of the Rh film. The multilayered structure was then alloyed / sintered using rapid Joule heating. We can precisely control the thickness of the resultant alloy films down to the atomic scale. The Rh@Ir alloy thin films were characterized using scanning and transmission electron microscopy (SEM/TEM) and energy dispersive spectroscopy (EDS) to study their microstructural characteristics. Grazing-incidence X-ray diffraction (GIXRD) and X-ray photoelectron spectroscopy (XPS) were also carried out to confirm the composition and formation of Rh-Ir thin film alloys. All the characterization results reveal that the Rh-Ir alloy thin film was prepared successfully with one single phase and homogeneous distribution of Rh and Ir throughout the film. Molecular Dynamics simulation experiments of Rh/Ir alloys using Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) were performed to elucidate the alloying mechanism during the rapid heating process, corroborating the experimental results.


2021 ◽  
Vol 2061 (1) ◽  
pp. 012037
Author(s):  
G D Vernigora ◽  
E V Kruchinina ◽  
M A Mukutadze

Abstract The authors propose an asymptotic and exact self-similar solution for zero (without considering the melt) and the first (considering the melt) approximation of a wedge-shaped sliding support with a profile adapted to friction and a fusible metal coating of the guide surface. The solution is based on the equation of a micropolar liquid flow for a “thin layer”, the continuity equation, as well as the equation describing the profile of the molten contour of a guide coated with a fusible metal alloy. The authors have taken into account the formula of the rate of mechanical energy dissipation as well as rheological properties of the lubricant and the melt, which have micropolar properties in the laminar flow mode at incomplete filling of the working gap. Analytical dependences have been obtained for the profile of the molten surface of the guide coated with a low-melting metal alloy, as well as for the velocity and pressure fields at zero and first approximation. In addition, the main operating characteristics of the friction pair under consideration have been determined: the bearing capacity and the friction force. The article contains estimation of the influence of the parameters conditioned by coating melt and adapted to the friction conditions of the support profile, and the parameter characterizing the rheological properties of the lubricant, as well as the length of the loaded area in terms of bearing capacity and friction force.


Sign in / Sign up

Export Citation Format

Share Document