Study on critical length for simulation in tunnel fires

2021 ◽  
Vol 115 ◽  
pp. 104013
Author(s):  
Zhengyang Wang ◽  
Xuepeng Jiang ◽  
Fei Tang ◽  
Jian Li
Keyword(s):  
Author(s):  
F. Louchet ◽  
L.P. Kubin

Investigation of frictional forces -Experimental techniques and working conditions in the high voltage electron microscope have already been described (1). Care has been taken in order to minimize both surface and radiation effects under deformation conditions.Dislocation densities and velocities are measured on the records of the deformation. It can be noticed that mobile dislocation densities can be far below the total dislocation density in the operative system. The local strain-rate can be deduced from these measurements. The local flow stresses are deduced from the curvature radii of the dislocations when the local strain-rate reaches the values of ∿ 10-4 s-1.For a straight screw segment of length L moving by double-kink nucleation between two pinning points, the velocity is :where ΔG(τ) is the activation energy and lc the critical length for double-kink nucleation. The term L/lc takes into account the number of simultaneous attempts for double-kink nucleation on the dislocation line.


2020 ◽  
Vol 21 (4) ◽  
pp. 821-828 ◽  
Author(s):  
Mohammad Nematollahi ◽  
Mehdi Karevan ◽  
Marzieh Fallah ◽  
Mahmoud Farzin

2005 ◽  
Vol 128 (2) ◽  
pp. 203-206 ◽  
Author(s):  
A.-R. A. Khaled

Heat transfer through joint fins is modeled and analyzed analytically in this work. The terminology “joint fin systems” is used to refer to extending surfaces that are exposed to two different convective media from its both ends. It is found that heat transfer through joint fins is maximized at certain critical lengths of each portion (the receiver fin portion which faces the hot side and the sender fin portion that faces the cold side of the convective media). The critical length of each portion of joint fins is increased as the convection coefficient of the other fin portion increases. At a certain value of the thermal conductivity of the sender fin portion, the critical length for the receiver fin portion may be reduced while heat transfer is maximized. This value depends on the convection coefficient for both fin portions. Thermal performance of joint fins is increased as both thermal conductivity of the sender fin portion or its convection coefficient increases. This work shows that the design of machine components such as bolts, screws, and others can be improved to achieve favorable heat transfer characteristics in addition to its main functions such as rigid fixation properties.


2021 ◽  
Vol 143 ◽  
pp. 105408
Author(s):  
Henrik Bjelland ◽  
Ove Njå ◽  
Atle William Heskestad ◽  
Geir Sverre Braut

2021 ◽  
Vol 112 ◽  
pp. 103894
Author(s):  
Jia-Kang Shi ◽  
Cong Zuo ◽  
Yuan-yuan Xiong ◽  
Maolei Zhou ◽  
Peng Lin

2017 ◽  
Vol 11 (1) ◽  
pp. 217-228 ◽  
Author(s):  
Johan Gaume ◽  
Alec van Herwijnen ◽  
Guillaume Chambon ◽  
Nander Wever ◽  
Jürg Schweizer

Abstract. The failure of a weak snow layer buried below cohesive slab layers is a necessary, but insufficient, condition for the release of a dry-snow slab avalanche. The size of the crack in the weak layer must also exceed a critical length to propagate across a slope. In contrast to pioneering shear-based approaches, recent developments account for weak layer collapse and allow for better explaining typical observations of remote triggering from low-angle terrain. However, these new models predict a critical length for crack propagation that is almost independent of slope angle, a rather surprising and counterintuitive result. Based on discrete element simulations we propose a new analytical expression for the critical crack length. This new model reconciles past approaches by considering for the first time the complex interplay between slab elasticity and the mechanical behavior of the weak layer including its structural collapse. The crack begins to propagate when the stress induced by slab loading and deformation at the crack tip exceeds the limit given by the failure envelope of the weak layer. The model can reproduce crack propagation on low-angle terrain and the decrease in critical length with increasing slope angle as modeled in numerical experiments. The good agreement of our new model with extensive field data and the ease of implementation in the snow cover model SNOWPACK opens a promising prospect for improving avalanche forecasting.


2000 ◽  
Vol 14 (16) ◽  
pp. 1669-1681 ◽  
Author(s):  
SANDEEP K. JOSHI ◽  
A. M. JAYANNAVAR

A study of statistics of transmission and reflection from a random medium with stochastic amplification as opposed to coherent amplification is presented. It is found that the transmission coefficient t, for sample length L less than the critical length L c grows exponentially with L. In the limit L→∞ transmission decays exponentially as < ln t>=-L/ξ where ξ is the localization length. In this limit reflection coefficient r saturates to a fixed value which shows a monotonic increase as a function of strength of amplification α. The stationary distribution of super-reflection coefficient agrees well with the analytical results obtained within the random phase approximation (RPA). Our model also exhibits the well known duality between absorption and amplification. We emphasize the major differences between coherent amplification and stochastic amplification where-ever appropriate.


Sign in / Sign up

Export Citation Format

Share Document