ventilation velocity
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 20)

H-INDEX

10
(FIVE YEARS 4)

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Lirong Wu ◽  
Hongxuan Chen ◽  
Jiamin Li ◽  
Shican Fu ◽  
Yuyan Zhuang

The dust concentration changing regularities are the basis to take dust depression measures, which is greatly influenced by the airflow. In the software of FLUENT, the value of ventilation velocity is set as a constant, which cannot express the real ventilation. According to the flow characteristics of the sublayer and data from Nicholas’ experiment, the ventilation velocity distribution formula of sublayer in the inlet section of fully mechanized caving coal face is deduced. The boundary condition of velocity is given by UDF. Taking the 3top1110 fully mechanized caving coal face as an example, the dust distribution in the process of coal mining and hydraulic support shifting was studied. According to the dust-spray coupling experiment, three types of nozzle are chosen based on the efficiency of dust suppression. Combining the dust migration rule and the characteristics of nozzles, the negative pressure-secondary dust suppression devices of spray were developed and applied. And the above measures have lowered the dust concentration effectively.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Zhizhong Liu ◽  
Chen Chen ◽  
Mu Liu ◽  
Song Wang ◽  
Yuzhu Liu

Once a fire occurs in a long curve tunnel, the mixing of hot smoke flow and cold air leads to turbulence due to the curvature’s impact. This phenomenon results in a greater thermal pressure difference at the fire source and a substantially greater temperature field than in the straight tunnel. The longitudinal air flowing along the wall loses a lot of velocity in the curve tunnel due to the massive wall friction. Under the same fire extinguishing conditions, the curve tunnel and straight tunnel have different requirements for longitudinal ventilation. Factors such as tunnel curvature, longitudinal ventilation operation time, and ventilation velocity were all evaluated in order to investigate the influence of longitudinal ventilation parameters on the fire extinguishing effect of water mist in the curve tunnel. The fire extinguishing effect of water mist coupling with longitudinal ventilation in the curve tunnel is studied by numerical simulation, and the recommended values of ventilation operation time and ventilation velocity in the curve tunnel with the participation of the water mist system are given. The results show that (1) the fire extinguishing effect of water mist decreases with the increase of curvature under longitudinal ventilation and (2) fire prevention effect is best when water mist and longitudinal ventilation are used in the curved tunnel, and the ventilation velocity should be greater than 2 m/s.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4765
Author(s):  
Bin Li ◽  
Jiaming Guo ◽  
Jingjing Xia ◽  
Xinyu Wei ◽  
Hao Shen ◽  
...  

Cold-storage containers are widely used in cold-chain logistics transportation due to their energy saving, environmental protection, and low operating cost. The uniformity of temperature distribution is significant in agricultural-product storage and transportation. This paper explored temperature distribution in the container by numerical simulation, which included ventilation velocity and the fan location. Numerical model/numerical simulation showed good agreement with experimental data in terms of temporal and spatial air temperature distribution. Results showed that the cooling rate improved as velocity increased, and temperature at 45 min was the lowest, when velocity was 16 m/s. Temperature-distribution uniformity in the compartment became worse with the increase in ventilation velocity, but its lowest temperature decreased with a velocity increase. With regard to fan energy consumption, the cooling rate of the cooling module, and temperature-field distribution in the product area, velocity of 12 m/s was best. Temperature standard deviation and nonuniformity coefficient in the container were 0.87 and 2.1, respectively, when fans were located in the top four corners of the container. Compared with before, the average temperature in the box was decreased by 0.12 °C, and the inhomogeneity coefficient decreased by more than twofold. The results of this paper provide a better understanding of temperature distribution in cold-storage containers, which helps to optimize their structure and parameters.


2020 ◽  
Vol 34 (4) ◽  
pp. 59-68
Author(s):  
Won-Hee Park ◽  
Sun-Woo Hwang ◽  
Chang-Yong Kim

In this study, the authors designed a reduced-scale railway vehicle fire, which was necessary for evaluating the fire safety of railway tunnels using a reduced model. To overcome the shortcomings of the methods used in conventional reduced-scale railway tunnel tests, the authors simulated the fire source of a railway vehicle using a methanol fire source for fire buoyancy, and a smoke cartridge for smoke visualization. Therefore, the heat release mass consumption rates of various methane trays were measured using a cone calorimeter (ISO 5660). The critical ventilation velocity in the railway tunnels was obtained using the designed fire source of the railway vehicle, which was evaluated by the measured temperature at the top of the tunnel as well as laser visualization.


Sign in / Sign up

Export Citation Format

Share Document