Free vibrational characteristics of GNP-reinforced joined conical–conical​ shells with different boundary conditions

2021 ◽  
Vol 169 ◽  
pp. 108287
Author(s):  
Ali Reza Damercheloo ◽  
Ahmad Reza Khorshidvand ◽  
S. Mahdi Khorsandijou ◽  
Mohsen Jabbari
Author(s):  
Reza Paknejad ◽  
Faramarz Ashenai Ghasemi ◽  
Keramat Malekzadeh Fard

In this paper, natural frequency of a multilayer truncated conical composite shell conveying quiescent fluid on elastic foundation with different boundary conditions is investigated and analyzed. The governing equations are presented based on the first-order shear deformation theory. Bernoulli’s equation and velocity potential have been used in the shell-fluid interface to obtain the fluid pressure. The fluid used in this study is considered non-compressible and non-viscous. The beam functions and the Galerkin weight functions method are used to describe and solve the coupled system of differential equations. Three types of boundary conditions are considered to investigate the natural frequency of the conical shells. The results show that the presence of the fluid in the conical shell reduces the fundamental natural frequency values. Also, by changing the semi-vertex conical angle from [Formula: see text] to [Formula: see text] for the simply support boundary conditions, the fundamental natural frequency value for the composite conical shell without and with fluid increases, and the presence of the elastic foundation increases the frequencies of the empty and full-fluid composite conical shells.


Author(s):  
Shahin Mohammadrezazadeh ◽  
Ali Asghar Jafari

This paper investigates the nonlinear vibration responses of laminated composite conical shells surrounded by elastic foundations under S-S and C-C boundary conditions via an approximate approach. The laminated composite conical shells are modeled based on classical shell theory of Love employing von Karman nonlinear theory. Nonlinear vibration equation of the conical shells is extracted by handling Lagrange method. The linear and nonlinear vibration responses are obtained via an approximate method which combines Lindstedt-Poincare method with modal analysis. The validation of this study is carried out through the comparison of the results of this study with results of published literature. The effects of several parameters including the constants of elastic foundations, boundary conditions, total thickness, length, large edge radius and semi-vertex angle on the values of fundamental linear frequency and curves of amplitude parameter versus nonlinear frequency ratio for laminated composite conical shells with both S-S and C-C boundary conditions are investigated.


Author(s):  
Jacopo Quaglierini ◽  
Alessandro Lucantonio ◽  
Antonio DeSimone

Abstract Nature and technology often adopt structures that can be described as tubular helical assemblies. However, the role and mechanisms of these structures remain elusive. In this paper, we study the mechanical response under compression and extension of a tubular assembly composed of 8 helical Kirchhoff rods, arranged in pairs with opposite chirality and connected by pin joints, both analytically and numerically. We first focus on compression and find that, whereas a single helical rod would buckle, the rods of the assembly deform coherently as stable helical shapes wound around a common axis. Moreover, we investigate the response of the assembly under different boundary conditions, highlighting the emergence of a central region where rods remain circular helices. Secondly, we study the effects of different hypotheses on the elastic properties of rods, i.e., stress-free rods when straight versus when circular helices, Kirchhoff’s rod model versus Sadowsky’s ribbon model. Summing up, our findings highlight the key role of mutual interactions in generating a stable ensemble response that preserves the helical shape of the individual rods, as well as some interesting features, and they shed some light on the reasons why helical shapes in tubular assemblies are so common and persistent in nature and technology. Graphic Abstract We study the mechanical response under compression/extension of an assembly composed of 8 helical rods, pin-jointed and arranged in pairs with opposite chirality. In compression we find that, whereas a single rod buckles (a), the rods of the assembly deform as stable helical shapes (b). We investigate the effect of different boundary conditions and elastic properties on the mechanical response, and find that the deformed geometries exhibit a common central region where rods remain circular helices. Our findings highlight the key role of mutual interactions in the ensemble response and shed some light on the reasons why tubular helical assemblies are so common and persistent.


1970 ◽  
Vol 37 (2) ◽  
pp. 384-392 ◽  
Author(s):  
M. Baruch ◽  
O. Harari ◽  
J. Singer

The stability of simply supported conical shells under axial compression is investigated for 4 different sets of in-plane boundary conditions with a linear Donnell-type theory. The first two stability equations are solved by the assumed displacement, while the third is solved by a Galerkin procedure. The boundary conditions are satisfied with 4 unknown coefficients in the expression for u and v. Both circumferential and axial restraints are found to be of primary importance. Buckling loads about half the “classical” ones are obtained for all but the stiffest simple supports SS4 (v = u = 0). Except for short shells, the effects do not depend on the length of the shell. The physical reason for the low buckling loads in the SS3 case is explained and the essential difference between cylinder and cone in this case is discussed. Buckling under combined axial compression and external or internal pressure is studied and interaction curves have been calculated for the 4 sets of in-plane boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document