Numerical simulation of the nocturnal cooling effect of urban trees considering the leaf area density distribution

2021 ◽  
Vol 66 ◽  
pp. 127391
Author(s):  
Haruki Oshio ◽  
Tomoki Kiyono ◽  
Takashi Asawa
2021 ◽  
Vol 13 (13) ◽  
pp. 7496
Author(s):  
Atefeh Tamaskani Esfehankalateh ◽  
Jack Ngarambe ◽  
Geun Young Yun

Urban heat islands (UHI) are a widely documented phenomenon that adversely increases urban overheating and, among other effects, contributes to heat-related mortalities and morbidities in urban areas. Consequently, comprehensive UHI-mitigating measures are essential for improving urban microclimate environments and contributing to salutogenic urban design practices. This study proposed urban cooling strategies involving different tree percentages and leaf area densities in a dense urban area during the summertime in Korea. The cooling effects of sixteen various combinations of proposed scenarios based on common urban tree types were studied via in-situ field measurements and numerical modeling, considering both vegetated and exposed areas. It was observed that by changing the characteristics of the leaf area density (LAD) per plant of our vegetated base area—for instance, from 4% trees to 60% trees, from a low LAD to a high LAD—the daily average and daily maximum temperatures were reduced by approximately 3 °C and 5.23 °C, respectively. The obtained results demonstrate the usefulness of urban trees to mitigate urban heating, and they are particularly useful to urban designers and policymakers in their efforts to minimize UHI effects.


2019 ◽  
Vol 433 ◽  
pp. 364-375 ◽  
Author(s):  
Aaron G. Kamoske ◽  
Kyla M. Dahlin ◽  
Scott C. Stark ◽  
Shawn P. Serbin

2006 ◽  
Vol 71 (603) ◽  
pp. 111-117
Author(s):  
Ai KADAIRA ◽  
Harunori YOSHIDA ◽  
Daisuke MURAKAMI ◽  
Mamiko ITOU

1982 ◽  
Vol 33 (2) ◽  
pp. 187 ◽  
Author(s):  
MM Ludlow ◽  
TH Stobbs ◽  
R Davos ◽  
DA Charles-Edwards

Our aim was to determine whether increasing the sward density of tropical pastures, for the purpose of enhancing the size of bite harvested by grazing cattle, would reduce yield by affecting light distribution andcanopy photosynthesis. The growth regulators (2-chloroethy1)trimethylammonium chloride (CCC) and gibberillic acid (GA) were used to alter the leaf area density of the tussock-forming grass Setavia sphacelata and of the sward-forming grass Digitaria decumbens. GA increased plant height, the length of stem internodes, and the size of bite harvested by cattle. On the other hand, CCC decreased canopy height, and increased leaf area density and bite size. The variation of leaf area density, investigated experimentally by using growth regulators (5-25 m-1) and theoretically by simulation modelling (5-40 m-1), had no significant effect on either leaf or canopy photosynthetic characteristics. Hence we believe that there would be a negligible reduction in yield of these tropical grasses if their leaf area densities were increased up to a value of 40 m-1, which exceeds those of temperate pastures. Such increases in leaf area density may increase animal production from tropical pastures where bite size limits daily intake of forage. The agricultural implications of the findings are discussed.


Sign in / Sign up

Export Citation Format

Share Document