In situ 2-D piezoelectric wafer active sensors arrays for guided wave damage detection

Ultrasonics ◽  
2008 ◽  
Vol 48 (2) ◽  
pp. 117-134 ◽  
Author(s):  
Lingyu Yu ◽  
Victor Giurgiutiu
Author(s):  
Lingyu Yu ◽  
Victor Giurgiutiu ◽  
Yuh Chao ◽  
Patrick Pollock

Pipelines are important infrastructures in petroleum and gas industries which are vital to the national economy. They are typically subjected to corrosion inside of the pipe and there is an urgent need for the development of a cost-effective, non-excavating, in-service, permanent critical pipeline damage detection and prediction system. In this paper, we proposed an in-situ multiple mode pipeline monitoring system by utilizing permanently installed piezoelectric wafer active sensors (PWAS). As an active sensing device, PWAS can be bonded to the structure or inserted into a composite structure, operated in propagating wave mode or electromechanical impedance mode. The small size and low cost (about ∼$10 each) make it a potential and unique technology for in-situ application. Additionally, PWAS transducers can operate at a temperature as high as 260°C which is sufficient for most critical pipeline systems used in gas/petroleum industry. This system can be used during in-service period, recording and monitoring the changes, such as cracks, impedance, wall thickness, etc., of the pipelines over time. Having the real-time data available, maintenance strategies based on these data can then be developed to ensure a safe and less expensive operation of the pipeline systems. The paper will first give an intensive literature review of current pipeline corrosion detection. Then, the basic principles of applying PWAS to in-situ SHM using in-plane propagation waves and impedance measurement for damage detection are studied and developed. Next, experiments were conducted to verify the corrosion detection and thickness measurement ability of PWAS sensor network in a laboratory setting and in water pipe with flowing fluid inside as well. In addition, the potential of PWAS application for high temperature pipeline thickness monitoring was also investigated.


Author(s):  
Victor Giurgiutiu

Piezoelectric wafer active sensors (PWAS) are lightweight and inexpensive transducers that enable a large class of structural health monitoring (SHM) applications such as: (a) embedded guided wave ultrasonics, i.e., pitch-catch, pulse-echo, phased arrays; (b) high-frequency modal sensing, i.e., the electro-mechanical (E/M) impedance method; and (c) passive detection (acoustic emission and impact detection). The focus of this paper is on the challenges posed by using PWAS transducers in the composite structures as different from the metallic structures on which this methodology was initially developed. After a brief introduction, the paper reviews the PWAS-based SHM principles. It follows with a discussion of guided wave propagation in composites and PWAS tuning effects. Then, it discusses damage modes in composites. Finally, the paper presents some experimental results with damage detection in composite specimens. Hole damage and impact damage were detected using pitch-catch method with tuned guided waves being sent between a transmitter PWAS and a received PWAS. Root mean square deviation (RMSD) damage index (DI) were shown to correlate well with hole size and impact intensity. The paper ends with summary and conclusion; suggestions for further work are also presented.


2013 ◽  
Vol 117 (1196) ◽  
pp. 971-995 ◽  
Author(s):  
M. Gresil ◽  
V. Giurgiutiu

AbstractPiezoelectric wafer active sensors (PWAS) are lightweight and inexpensive transducers that enable a large class of structural health monitoring (SHM) applications such as: (a) embedded guided wave ultrasonics, i.e., pitch-catch, pulse-echo, phased arrays; (b) high-frequency modal sensing, i.e., electro-mechanical impedance method; and (c) passive detection. The focus of this paper is on the challenges posed by using PWAS transducers in the composite laminate structures as different from the metallic structures on which this methodology was initially developed. After a brief introduction, the paper reviews the PWAS-based SHM principles. It follows with a discussion of guided wave propagation in composites and PWAS tuning effects. Then, the mechanical effect is discussed on the integration of piezoelectric wafer inside the laminate using a compression after impact. Experiments were performed on a glass fibre laminate, employing PWAS to measure the attenuation coefficient. Finally, the paper presents some experimental and multi-physics finite element method (MP-FEM) results on guided wave propagation in composite laminate specimens.


Sign in / Sign up

Export Citation Format

Share Document