piezoelectric wafer active sensors
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 7)

H-INDEX

21
(FIVE YEARS 2)

2020 ◽  
Author(s):  
A. N. Shpak ◽  
M. V. Golub ◽  
S. A. Glinkova ◽  
S. I. Fomenko ◽  
I. Mueller

Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1734 ◽  
Author(s):  
Hanfei Mei ◽  
Asaad Migot ◽  
Mohammad Faisal Haider ◽  
Roshan Joseph ◽  
Md Yeasin Bhuiyan ◽  
...  

This paper presents a new methodology for detecting and quantifying delamination in composite plates based on the high-frequency local vibration under the excitation of piezoelectric wafer active sensors. Finite-element-method-based numerical simulations and experimental measurements were performed to quantify the size, shape, and depth of the delaminations. Two composite plates with purpose-built delaminations of different sizes and depths were analyzed. In the experiments, ultrasonic C-scan was applied to visualize the simulated delaminations. In this methodology, piezoelectric wafer active sensors were used for the high-frequency excitation with a linear sine wave chirp from 1 to 500 kHz and a scanning laser Doppler vibrometer was used to measure the local vibration response of the composite plates. The local defect resonance frequencies of delaminations were determined from scanning laser Doppler vibrometer measurements and the corresponding operational vibration shapes were measured and utilized to quantify the delaminations. Harmonic analysis of local finite element model at the local defect resonance frequencies demonstrated that the strong vibrations only occurred in the delamination region. It is shown that the effect of delamination depth on the detectability of the delamination was more significant than the size of the delamination. The experimental and finite element modeling results demonstrate a good capability for the assessment of delamination with different sizes and depths in composite structures.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 383 ◽  
Author(s):  
Hanfei Mei ◽  
Mohammad Haider ◽  
Roshan Joseph ◽  
Asaad Migot ◽  
Victor Giurgiutiu

In this paper, some recent piezoelectric wafer active sensors (PWAS) progress achieved in our laboratory for active materials and smart structures (LAMSS) at the University of South Carolina: http: //www.me.sc.edu/research/lamss/ group is presented. First, the characterization of the PWAS materials shows that no significant change in the microstructure after exposure to high temperature and nuclear radiation, and the PWAS transducer can be used in harsh environments for structural health monitoring (SHM) applications. Next, PWAS active sensing of various damage types in aluminum and composite structures are explored. PWAS transducers can successfully detect the simulated crack and corrosion damage in aluminum plates through the wavefield analysis, and the simulated delamination damage in composite plates through the damage imaging method. Finally, the novel use of PWAS transducers as acoustic emission (AE) sensors for in situ AE detection during fatigue crack growth is presented. The time of arrival of AE signals at multiple PWAS transducers confirms that the AE signals are originating from the crack, and that the amplitude decay due to geometric spreading is observed.


Author(s):  
Mohammad Faisal Haider ◽  
Victor Giurgiutiu ◽  
Bin Lin ◽  
Lingyu Yu ◽  
Poh-Sang Lam ◽  
...  

This paper presents gamma radiation effects on resonant and antiresonant characteristics of piezoelectric wafer active sensors (PWAS) for structural health monitoring (SHM) applications to nuclear-spent fuel storage facilities. The irradiation test was done in a Co-60 gamma irradiator. Lead zirconate titanate (PZT) and Gallium Orthophosphate (GaPO4) PWAS transducers were exposed to 225 kGy gamma radiation dose. First, 2 kGy of total radiation dose was achieved with slower radiation rate at 0.1 kGy/h for 20; h then the remaining radiation dose was achieved with accelerated radiation rate at 1.233 kGy/h for 192 h. The total cumulative radiation dose of 225 kGy is equivalent to 256 years of operation in nuclear-spent fuel storage facilities. Electro-mechanical impedance and admittance (EMIA) signatures were measured after each gamma radiation exposure. Radiation-dependent logarithmic sensitivity of PZT-PWAS in-plane and thickness modes resonance frequency (∂(fR)/∂( logeRd)) was estimated as 0.244 kHz and 7.44 kHz, respectively; the logarithmic sensitivity of GaPO4-PWAS in-plane and thickness modes resonance frequency was estimated as 0.0629 kHz and 2.454 kHz, respectively. Therefore, GaPO4-PWAS EMIA spectra show more gamma radiation endurance than PZT-PWAS. Scanning electron microscope (SEM) and X-ray diffraction method (XRD) was used to investigate the microstructure and crystal structure of PWAS transducers. From SEM and XRD results, it can be inferred that there is no significant variation in the morphology, the crystal structure, and grain size before and after the irradiation exposure.


2018 ◽  
Vol 29 (10) ◽  
pp. 2177-2191 ◽  
Author(s):  
Hanfei Mei ◽  
Victor Giurgiutiu

Piezoelectric wafer active sensors have been widely used for Lamb-wave generation and acquisition. For selective preferential excitation of a certain Lamb-wave mode and rejection of other modes, the piezoelectric wafer active sensor size and the excitation frequency should be tuned. However, structural damping depends on the structure material and the excitation frequency and it will affect the amplitude response of piezoelectric wafer active sensor–excited Lamb waves in the structure, that is, tuning curves. Its influence on the piezoelectric wafer active sensor tuning reflects the effect of structural health monitoring configuration considered in the excitation. Therefore, it is important to have knowledge about the effect of structural damping on the tuning between piezoelectric wafer active sensor and Lamb waves. In this article, the analytical tuning solution of undamped media is extended to damped materials using the Kelvin–Voigt damping model, in which a complex Young’s modulus is utilized to include the effect of structural damping as an improvement over existing models. This extension is particularly relevant for the structural health monitoring applications on high-loss materials, such as metallic materials with viscoelastic coatings and fiber-reinforced polymer composites. The effects of structural damping on the piezoelectric wafer active sensor tuning are successfully captured by the improved model, with experimental validations on an aluminum plate with adhesive films on both sides and a quasi-isotropic woven composite plate using circular piezoelectric wafer active sensor transducers.


Sign in / Sign up

Export Citation Format

Share Document