Non-invasive Ultrasonic Inspection of Sludge Accumulation in a Pipe

Ultrasonics ◽  
2021 ◽  
pp. 106602
Author(s):  
Chunguang Piao ◽  
Sung Hyun Kim ◽  
Jun Kyu Lee ◽  
Won Goo Choi ◽  
Yoon Young Kim
Author(s):  
Vikram Vedantham ◽  
Anirudh Thummalapalli ◽  
Baozhong Yang ◽  
C. Steve Suh

Traditional transducer-based techniques for Non-Destructive Evaluation (NDE) are limited by fixed frequency-bandwidth for generation and sensing, and thus provide unsatisfactory resolution for certain types of material defects. Thermo-Acousto-Photonic NDE (TAP-NDE) is a proven alternative that is non-invasive and non-contact, and suited for real-time applications. This paper focuses on employing TAP-NDE to examine the presence of microcracks and fissures in multi-layered composites. Tests were performed on layered composite panels of specific epoxyresin composition and constant thickness to identify localized delaminations formed by subjecting the specimen to cryogenic cycling. Interrogation of the undamaged specimen using laser-generated broadband surface waves revealed a standard reference knowledge base, as seen in the instantaneous frequency-time domain. Tests were repeated after each specimen was subjected to a set number of cycles of liquid nitrogen cycling, which caused damages at the micron scale in the bulk material. Analyses showed changes in the time of wave arrival and absence of prominent high frequency components. Wave velocity and dispersion characteristics of the cycled specimen were altered. Thus, the specimen, on cryogenic cycling, was found to undergo a decrease in stiffness, which is speculatively the result of micro-voids, fissures or delaminations between layers. Hence, when combining with the basic notion of instantaneous frequency, TAP-NDE acts as an effective broadband generation and sensing technique, demonstrating feasibility and greater versatility for inspecting layered composites as against contemporary narrowband techniques.


Author(s):  
B. R. Tittmann

Ageing pressure vessels are potentially dangerous in that when not properly monitored they can lead to catastrophic failure. This report surveys some novel sensor techniques for monitoring the health of gas pressure vessels. They emphasize non-invasive techniques such as provided by ultrasonic inspection. They range from acoustic emission, to resonance acoustic gas pressure measurement, to crack imaging by acoustic microscopy, to ultrasonic position indication.


1997 ◽  
Vol 503 ◽  
Author(s):  
P. B. Nagy ◽  
W. S. Rosenberg ◽  
L. M. Stankovits

ABSTRACTPotentially dangerous neurological changes in shock-trauma patients are currently monitored by computer-aided X-ray tomography which is prohibitively expensive and even dangerous for long-term, e.g., comatose, patients. By ultrasound, only low-frequency “diffuse” ultrasonic inspection is feasible through the skull so that the details are irreversible lost in the essentially random scattering process. In order to overcome this inherent limitation, we adapted a continuous computer-controlled ultrasonic monitoring system based on the ultrasonic fingerprinting method originally developed for materials characterization purposes in the nuclear, civil engineering, and aerospace industries. An ultrasonic detector directed at the general area of interest can be used to record and repeatedly update the personal signature of the patient, which is then used as an “ultrasonic fingerprint.” Any abrupt change in this signature indicates the immediate need for further investigation by CT or other sophisticated diagnostic tools. Experimental studies were conducted on both a human skull/gelatin phantom and 5 intact human cadavers. Ultrasonic fingerprinting could detect the secondary effects of volumetric changes occurring at multiple locations and the average detectable volumes of mass lesions were found to be lower than indications for surgical intervention.


Author(s):  
H.W. Deckman ◽  
B.F. Flannery ◽  
J.H. Dunsmuir ◽  
K.D' Amico

We have developed a new X-ray microscope which produces complete three dimensional images of samples. The microscope operates by performing X-ray tomography with unprecedented resolution. Tomography is a non-invasive imaging technique that creates maps of the internal structure of samples from measurement of the attenuation of penetrating radiation. As conventionally practiced in medical Computed Tomography (CT), radiologists produce maps of bone and tissue structure in several planar sections that reveal features with 1mm resolution and 1% contrast. Microtomography extends the capability of CT in several ways. First, the resolution which approaches one micron, is one thousand times higher than that of the medical CT. Second, our approach acquires and analyses the data in a panoramic imaging format that directly produces three-dimensional maps in a series of contiguous stacked planes. Typical maps available today consist of three hundred planar sections each containing 512x512 pixels. Finally, and perhaps of most import scientifically, microtomography using a synchrotron X-ray source, allows us to generate maps of individual element.


2001 ◽  
Vol 120 (5) ◽  
pp. A266-A266
Author(s):  
R BUTLER ◽  
B ZACHARAKIS ◽  
D MOORE ◽  
K CRAWFORD ◽  
G DAVIDSON ◽  
...  

2001 ◽  
Vol 120 (5) ◽  
pp. A491-A491 ◽  
Author(s):  
A LEODOLTER ◽  
D VAIRA ◽  
F BAZZOLL ◽  
A HIRSCHL ◽  
F MEGRAUD ◽  
...  
Keyword(s):  

2020 ◽  
Vol 158 (6) ◽  
pp. S-1249
Author(s):  
Yuri Hanada ◽  
Juan Reyes Genere ◽  
Bryan Linn ◽  
Tiffany Mangels-Dick ◽  
Kenneth K. Wang

2007 ◽  
Vol 177 (4S) ◽  
pp. 430-430
Author(s):  
Ram Ganapathi ◽  
Troy R. Gianduzzo ◽  
Arul Mahadevan ◽  
Monish Aron ◽  
Lee E. Ponsky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document