A High Frequency Endoscopic Ultrasound Imaging Method combining Chirp Coded Excitation and Compressed Sensing

Ultrasonics ◽  
2022 ◽  
pp. 106669
Author(s):  
Ninghao Wang ◽  
Xinze Li ◽  
Jie Xu ◽  
Yang Jiao ◽  
Yaoyao Cui ◽  
...  
2021 ◽  
Author(s):  
Xuegang Su

We are investigating the feasibility of binary coded excitation methods using Golay code pairs for high frequency ultrasound imaging as a way to increase the signal to noise ratio. I present some theoretical models used to simulate the coded excitation method and results generated from the models. A new coded excitation high frequency ultrasound prototype system was built to verify the simulation results. Both the simulation and the experimental results show that binary coded excitation can improve the signal to noise ratio in high frequency ultrasound backscatter signals. These results are confirmed in phantoms and excised bovine liver. If just white noise is considered, the encoding gain is 15dB for a Golay pair of length 4. We find the system to be very sensitive to motion (i.e. phase shift) and frequency dependent (FD) attenuation, creating sidelobes and degrading axial resolution and encoding gain. Methods to address these issues are discussed.


2021 ◽  
Author(s):  
Xuegang Su

We are investigating the feasibility of binary coded excitation methods using Golay code pairs for high frequency ultrasound imaging as a way to increase the signal to noise ratio. I present some theoretical models used to simulate the coded excitation method and results generated from the models. A new coded excitation high frequency ultrasound prototype system was built to verify the simulation results. Both the simulation and the experimental results show that binary coded excitation can improve the signal to noise ratio in high frequency ultrasound backscatter signals. These results are confirmed in phantoms and excised bovine liver. If just white noise is considered, the encoding gain is 15dB for a Golay pair of length 4. We find the system to be very sensitive to motion (i.e. phase shift) and frequency dependent (FD) attenuation, creating sidelobes and degrading axial resolution and encoding gain. Methods to address these issues are discussed.


Author(s):  
Yuanyu Yu ◽  
Jiujiang Wang ◽  
Xin Liu ◽  
Sio Hang Pun ◽  
Weibao Qiu ◽  
...  

Background:: Ultrasound is widely used in the applications of underwater imaging. Capacitive micromachined ultrasonic transducer (CMUT) is a promising candidate to the traditional piezoelectric ultrasonic transducer. In underwater ultrasound imaging, better resolutions can be achieved with a higher frequency ultrasound. Therefore, a CMUT array for high-frequency ultrasound imaging is proposed in this work. Methods:: Analytical methods are used to calculate the center frequency in water and the pull-in voltage for determining the operating point of CMUT. Finite element method model was developed to finalize the design parameters. The CMUT array was fabricated with a five-mask sacrificial release process. Results:: The CMUT array owned an immersed center frequency of 2.6 MHz with a 6 dB fractional bandwidth of 123 %. The pull-in voltage of the CMUT array was 85 V. An underwater imaging experiment was carried out with the target of three steel wires. Conclusion:: In this study, we have developed CMUT for high-frequency underwater imaging. The experiment showed that the CMUT can detect the steel wires with the diameter of 100 μm and the axial resolution was 0.582 mm, which is close to one wavelength of ultrasound in 2.6 MHz.


Sign in / Sign up

Export Citation Format

Share Document