2090990 Shear Wave Elastography of Thyroid Nodules for the Prediction Of Thyroid Malignancy

2015 ◽  
Vol 41 (4) ◽  
pp. S157
Author(s):  
Jeong-Ah Kim
2019 ◽  
Vol 8 (8) ◽  
pp. 1195-1205 ◽  
Author(s):  
Kristine Zøylner Swan ◽  
Steen Joop Bonnema ◽  
Marie Louise Jespersen ◽  
Viveque Egsgaard Nielsen

Thyroid nodular disease is common, but predicting the risk of malignancy can be difficult. In this prospective study, we aimed to assess the diagnostic accuracy of shear wave elastography (SWE) in predicting thyroid malignancy. Patients with thyroid nodules were enrolled from a surgical tertiary unit. Elasticity index (EI) measured by SWE was registered for seven EI outcomes assessing nodular stiffness and heterogeneity. The diagnosis was determined histologically. In total, 329 patients (mean age: 55 ± 13 years) with 413 thyroid nodules (mean size: 32 ± 13 mm, 88 malignant) were enrolled. Values of SWE region of interest (ROI) for malignant and benign nodules were highly overlapping (ranges for SWE-ROImean: malignant 3–100 kPa; benign 4–182 kPa), and no difference between malignant and benign nodules was found for any other EI outcome investigated (P = 0.13–0.96). There was no association between EI and the histological diagnosis by receiver operating characteristics analysis (area under the curve: 0.51–0.56). Consequently, defining a cut-off point of EI for the prediction of malignancy was not clinically meaningful. Testing our data on previously proposed cut-off points revealed a low accuracy of SWE (56–80%). By regression analysis, factors affecting EI included nodule size >30 mm, heterogeneous echogenicity, micro- or macrocalcifications and solitary nodule. In conclusion, EI, measured by SWE, showed huge overlap between malignant and benign nodules, and low diagnostic accuracy in the prediction of thyroid malignancy. Our study supports that firmness of thyroid nodules, as assessed by SWE, should not be a key feature in the evaluation of such lesions.


2019 ◽  
Author(s):  
Mihaela Vlad ◽  
Ioana Golu ◽  
Maria Oprea ◽  
Daniela Amzar ◽  
Melania Balas ◽  
...  

2018 ◽  
Vol 68 (12) ◽  
pp. 2818-2822
Author(s):  
Maria Cristina Oprea ◽  
Mihaela Vlad ◽  
Ioana Golu ◽  
Ioan Sporea ◽  
Lazar Fulger

Thyroid nodules are a common pathology found in 50 to 60% of otherwise healthy people. Diagnostic imaging techniques are help discriminating between benign and malignant nodules, while fine needle aspiration is still a gold standard. Shear wave elastography, a recent imaging technique, holds the promise to become reliable diagnostic tools and is currently used in combination with ultrasound. We here report data obtained in a series of 52 thyroid nodules analysed by means of elastography, as well as conventional and Doppler ultrasound. We found no differences in age, nodule and thyroid volume, length, width, thickness and maximum diameter between benign and malignant lesions. Several sonographic patterns are considered to be predictive of malignancy, out of which we only found the intranodular blood flow to be statistically significant. By the means of shear wave elastography we have first assessed tissue elasticities, which are shown in a range of colours, depending on tissue elasticity/stiffness. Then, we have measured and recorded four parameters automatically displayed by the system, namely SWE-mean, SWE-max, SWE-SD and SWE-ratio. Data analysis showed all these quantitative parameters had good sensitivity, specificity, positive predictive value, negative predictive value and area under the curve, as calculated by the ROC curve. As with these parameters, the cut-off points were lower than in literature, still able to indicate reliable diagnoses, which were confirmed by histopathological exam. Our conclusion is that shear wave elastography has great potential for reliably and accurately diagnosing thyroid malignancies.


2015 ◽  
Vol 84 (3) ◽  
pp. 407-412 ◽  
Author(s):  
Ah Young Park ◽  
Eun Ju Son ◽  
Kyunghwa Han ◽  
Ji Hyun Youk ◽  
Jeong-Ah Kim ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mohammed Hazem ◽  
Ossama M. Zakaria ◽  
Mohamed Yasser Ibrahim Daoud ◽  
Ibrahim Khalid Al Jabr ◽  
Abdulwahab A. AlYahya ◽  
...  

Abstract Background Thyroid nodules are an important health problem in children and adolescents. They possess a higher risk of malignancy in comparison to adults. This fact forms a great dilemma for clinicians. The aim of this study was to evaluate the reliability of shear wave elastography (SWE) as a non-invasive technique in the characterization of thyroid nodules in children and adolescents. Methods This prospective study included 56 patients with thyroid nodules. All the patients underwent clinical assessment, laboratory investigations, ultrasound, and Doppler examination, followed by an SWE assessment. Statistical analysis was performed and the best cut-off value to differentiate benign from malignant nodules was determined using the ROC curve and AUC. Results Seventy-two nodules were detected in the examined patients (ages ranged from 11 to 19 years, with mean age of 14.89 ± 2.3 years). Fifty-eight nodules (80.6%) were benign, and fourteen nodules (19.4%) were malignant (histopathologically proved). Highly suspicious criteria for prediction of malignancy by ultrasound and Doppler were hypoechoic echopattern, internal or internal and peripheral vascularity, microcalcifications, taller-than-wide dimensions, irregular outlines, and absence of halo (p < 0.05). The diagnostic performance for their summation was 70.69% sensitivity, 82.8% specificity, 80.45% accuracy, a 63.79% positive predictive value (PPV), and 87.9% negative predictive values (NPV). Regarding SWE, our results showed that 42.2 kPa was the best cut-off value, with AUC = 0.921 to differentiate malignant from benign nodules; the diagnostic performance was 85.71% sensitivity, 94.83% specificity, 93.06% accuracy, 76.9% PPV, and 93.2% NPV. Conclusion Shear wave elastography is a non-invasive technique that can assist in the diagnosis of malignant thyroid nodules among children and adolescents.


2019 ◽  
Vol 45 ◽  
pp. S4-S5
Author(s):  
Pedro P. Moraes ◽  
Marcelo M. Straus ◽  
Marcelo M. Schelini ◽  
Rosa R. Sigrist ◽  
Maria Cristina M.C. Chammas

2019 ◽  
Vol 40 (04) ◽  
pp. 495-503 ◽  
Author(s):  
Vito Cantisani ◽  
Emanuele David ◽  
Hektor Grazhdani ◽  
Antonello Rubini ◽  
Maija Radzina ◽  
...  

Abstract Purpose To evaluate the diagnostic performance of strain ratio elastography (SRE) and shear wave elastography (SWE) alone and in combination with Thyroid Imaging Reporting and Data System (TIRADS) classification parameters to improve differentiation between benign and malignant thyroid nodules. Materials and Methods In this prospective study benign (n = 191) and malignant (n = 52) thyroid nodules were examined with high-resolution ultrasound (US) features using the TIRADS lexicon and SRE semiquantitative and SWE quantitative findings using histology or cytology as the gold standard with a 12-month follow-up. Sensitivity (Se), specificity (Sp) and the area under the ROC curve (AUROC) were used to evaluate the diagnostic performance of each feature and combinations of the methods. Results TIRADS score showed a sensitivity of 59.6 %, a specificity of 83.8 % with an AUROC of 0.717, a PPV of 50.0 % and an NPV of 88.4 %. SRE yielded the highest performance with a sensitivity of 82.7 %, a specificity of 92.7 % with AUROC of 0.877, a PPV 75.4 % and an NPV of 95.2 %. SWE (kPa) had a sensitivity and specificity of 67.3 % and 82.7 %, respectively, with an AUROC of 0.750, a PPV of 51.5 % and an NPV of 90.3 %. Differences were significant for SRE only but not for SWE. Conclusion Ultrasound elastography may improve thyroid nodule discrimination. In particular, SRE has a better performance than TIRADS classification, while their combination improves sensitivity.


2017 ◽  
Vol 37 (3) ◽  
pp. 601-609 ◽  
Author(s):  
Fen Wang ◽  
Cai Chang ◽  
Min Chen ◽  
Yi Gao ◽  
Ya-Ling Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document