scholarly journals Investigation of Ultrasound-Measured Flow Velocity, Flow Rate and Wall Shear Rate in Radial and Ulnar Arteries Using Simulation

2017 ◽  
Vol 43 (5) ◽  
pp. 981-992
Author(s):  
Xiaowei Zhou ◽  
Chunming Xia ◽  
Gandy Stephen ◽  
Faisel Khan ◽  
George A. Corner ◽  
...  
2016 ◽  
Vol 42 (3) ◽  
pp. 815-823 ◽  
Author(s):  
Xiaowei Zhou ◽  
Chunming Xia ◽  
Faisel Khan ◽  
George A. Corner ◽  
Zhihong Huang ◽  
...  

2003 ◽  
Vol 285 (1) ◽  
pp. H229-H240 ◽  
Author(s):  
Katherine B. Abbitt ◽  
Gerard B. Nash

We studied how the rheological properties of blood influenced capture and rolling adhesion of leukocytes as well as their margination in the bloodstream. When citrated, fluorescently labeled blood was perfused through glass capillaries coated with P-selectin, leukocytes formed numerous rolling attachments. The number of attached leukocytes increased as the hematocrit was increased between 10% and 30% and was essentially constant from 30% to 50%. In EDTA-treated blood, adhesion was absent, and the flux of marginated cells varied little with increasing hematocrit. However, the velocity of marginated leukocytes increased monotonically, whereas the volumetric flow rate was constant, implying that the flow velocity profile became blunted and wall shear rate increased. Thus increasing hematocrit promoted attachment for a given total flow rate, without increasing margination, even though wall shear rate and blood viscosity increased. Blood was diluted to 20% hematocrit with plasma, 40-kDa dextran (to reduce red blood cell aggregation), or 500-kDa dextran (to enhance aggregation). Increasing aggregation correlated with increasing leukocyte adhesion and with more slow-flowing leukocytes near the wall. Thus flowing erythrocytes promote leukocyte adhesion, either by causing margination of leukocytes or by initiating and stabilizing attachments that follow.


2001 ◽  
Vol 194 (2) ◽  
pp. 205-218 ◽  
Author(s):  
Einar E. Eriksson ◽  
Xun Xie ◽  
Joachim Werr ◽  
Peter Thoren ◽  
Lennart Lindbom

In the multistep process of leukocyte extravasation, the mechanisms by which leukocytes establish the initial contact with the endothelium are unclear. In parallel, there is a controversy regarding the role for L-selectin in leukocyte recruitment. Here, using intravital microscopy in the mouse, we investigated leukocyte capture from the free flow directly to the endothelium (primary capture), and capture mediated through interactions with rolling leukocytes (secondary capture) in venules, in cytokine-stimulated arterial vessels, and on atherosclerotic lesions in the aorta. Capture was more prominent in arterial vessels compared with venules. In venules, the incidence of capture increased with increasing vessel diameter and wall shear rate. Secondary capture required a minimum rolling leukocyte flux and contributed by ∼20–50% of total capture in all studied vessel types. In arteries, secondary capture induced formation of clusters and strings of rolling leukocytes. Function inhibition of L-selectin blocked secondary capture and thereby decreased the flux of rolling leukocytes in arterial vessels and in large (>45 μm in diameter), but not small (<45 μm), venules. These findings demonstrate the importance of leukocyte capture from the free flow in vivo. The different impact of blockage of secondary capture in venules of distinct diameter range, rolling flux, and wall shear rate provides explanations for the controversy regarding the role of L-selectin in various situations of leukocyte recruitment. What is more, secondary capture occurs on atherosclerotic lesions, a fact that provides the first evidence for roles of L-selectin in leukocyte accumulation in atherogenesis.


2008 ◽  
Vol 28 (5) ◽  
pp. 847-852 ◽  
Author(s):  
Vladimir Tuka ◽  
Marcela Slavikova ◽  
Zdislava Kasalova ◽  
Jan Malik

1976 ◽  
Vol 74 (1) ◽  
pp. 59-79 ◽  
Author(s):  
T. J. Pedley

The viscous boundary layer on a finite flat plate in a stream which reverses its direction once (at t = 0) is analysed using an improved version of the approximate method described earlier (Pedley 1975). Long before reversal (t < −t1), the flow at a point on the plate will be quasi-steady; long after reversal (t > t2), the flow will again be quasi-steady, but with the leading edge at the other end of the plate. In between (−t1 < t < t2) the flow is governed approximately by the diffusion equation, and we choose a simple solution of that equation which ensures that the displacement thickness of the boundary layer remains constant at t = −t1. The results of the theory, in the form of the wall shear rate at a point as a function of time, are given both for a uniformly decelerating stream, and for a sinusoidally oscillating stream which reverses its direction twice every cycle. The theory is further modified to cover streams which do not reverse, but for which the quasi-steady solution breaks down because the velocity becomes very small. The analysis is also applied to predict the wall shear rate at the entrance to a straight pipe when the core velocity varies with time as in a dog's aorta. The results show positive and negative peak values of shear very much larger than the mean. They suggest that, if wall shear is implicated in the generation of atherosclerosis because it alters the permeability of the wall to large molecules, then an appropriate index of wall shear at a point is more likely to be the r.m.s. value than the mean.


1995 ◽  
Vol 21 (2) ◽  
pp. 171-185 ◽  
Author(s):  
Peter J. Brands ◽  
Arnold P.G. Hoeks ◽  
Leo Hofstra ◽  
Robert S. Reneman

2013 ◽  
Vol 39 (2) ◽  
pp. 241-252 ◽  
Author(s):  
Dae Woo Park ◽  
Grant H. Kruger ◽  
Jonathan M. Rubin ◽  
James Hamilton ◽  
Paul Gottschalk ◽  
...  

Author(s):  
M Walsh ◽  
T McGloughlin ◽  
D W Liepsch ◽  
T O'Brien ◽  
L Morris ◽  
...  

The objective of this investigation was to assess the use of experimentally estimated wall shear stresses to validate numerically predicted results. The most commonly cited haemodynamic factor implicated in the disease initiation and proliferation processes at graft/artery junctions is wall shear stress (WSS). WSS can be determined from the product of the viscosity of the fluid and the wall shear rate. Numerically, the wall shear rate is predicted using velocity values stored in the computational cell near the wall and assuming zero velocity at the wall. Experimentally, the wall shear rate is estimated by applying a curve-fit to near-wall velocity measurements and evaluating the shear rate at a specific distance from the wall. When estimating the wall shear rate from the laser Doppler anemometry (LDA) point velocity measurements, large differences between the experimentally estimated and numerically predicted WSSs were introduced. It was found that the estimated WSS distributions from the experimental results are highly dependent on the curve-fitting method used to calculate the wall shear rate. However, the velocity profiles for both the experimental and numerical investigations show extremely good comparison. It is concluded that numerical models should be validated using unprocessed LDA point velocity measurement and not estimated WSS values.


Sign in / Sign up

Export Citation Format

Share Document