scholarly journals Corrigendum to “Blocking the glycolytic pathway sensitizes breast cancer to sonodynamic therapy” [Ultrasound Med Biol 44 (2018) 1233-1243].

Author(s):  
Lifen Xie ◽  
Xiaolan Feng ◽  
Yin Shi ◽  
Meng He ◽  
Pan Wang ◽  
...  
2018 ◽  
Vol 44 (6) ◽  
pp. 1233-1243 ◽  
Author(s):  
Lifen Xie ◽  
Xiaolan Feng ◽  
Yin Shi ◽  
Meng He ◽  
Pan Wang ◽  
...  

APOPTOSIS ◽  
2017 ◽  
Vol 22 (6) ◽  
pp. 800-815 ◽  
Author(s):  
Anna Lewinska ◽  
Jagoda Adamczyk-Grochala ◽  
Ewa Kwasniewicz ◽  
Anna Deregowska ◽  
Maciej Wnuk

2021 ◽  
Author(s):  
Qian Zhang ◽  
Wen Wang ◽  
Hongyuan Shen ◽  
Hongyu Tao ◽  
Yating Wu ◽  
...  

Abstract The metastasis of breast cancer is believed to have a negative effect on its prognosis. Benefiting from the remarkable deep-penetrating and non-invasive characteristics, sonodynamic therapy (SDT) demonstrates a whole series of potential leading to cancer treatment. To relieve the limitation of monotherapy, a multifunctional nanoplatform has been explored to realize the synergistic treatment efficiency. Herein, we establish a novel multifunctional nano-system which encapsulates chlorin e6 (Ce6, for SDT), perfluoropentane (PFP, for ultrasound imaging), and docetaxel (DTX, for chemotherapy) in a well-designed PLGA core-shell structure. The synergistic nanoparticle (CPDP NPs) featured with excellent biocompatibility and stability primarily enables its further application. Upon low intensity focused ultrasound (LIFU) irradiation, the enhanced ultrasound imaging could be revealed both in vitro and in vivo. More importantly, combined with LIFU, the nanoparticle exhibits intriguing antitumor capability through Ce6 induced cytotoxic reactive oxygen species as well as DTX releasing to generate a concerted therapeutic efficiency. Furthermore, this treating strategy actives a strong anti-metastasis capability by which lung metastatic nodules have been significantly reduced. The results indicate that the SDT-oriented nanoplatform combined with chemotherapy could be provided as a promising approach in elevating effective synergistic therapy and suppressing lung metastasis of breast cancer.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1751
Author(s):  
Elizabeth Mazzio ◽  
Nzinga Mack ◽  
Ramesh B. Badisa ◽  
Karam F. A. Soliman

A number of aggressive human malignant tumors are characterized by an intensified glycolytic rate, over-expression of lactic acid dehydrogenase A (LDHA), and subsequent lactate accumulation, all of which contribute toward an acidic peri-cellular immunosuppressive tumor microenvironment (TME). While recent focus has been directed at how to inhibit LDHA, it is now becoming clear that multiple isozymes of LDH must be simultaneously inhibited in order to fully suppress lactic acid and halt glycolysis. In this work we explore the biochemical and genomic consequences of an applied triple LDH isozyme inhibitor (A, B, and C) (GNE-140) in MDA-MB-231 triple-negative breast cancer cells (TNBC) cells. The findings confirm that GNE-140 does in fact, fully block the production of lactic acid, which also results in a block of glucose utilization and severe impedance of the glycolytic pathway. Without a fully functional glycolytic pathway, breast cancer cells continue to thrive, sustain viability, produce ample energy, and maintain mitochondrial potential (ΔΨM). The only observable negative consequence of GNE-140 in this work, was the attenuation of cell division, evident in both 2D and 3D cultures and occurring in fully viable cells. Of important note, the cytostatic effects were not reversed by the addition of exogenous (+) lactic acid. While the effects of GNE-140 on the whole transcriptome were mild (12 up-regulated differential expressed genes (DEGs); 77 down-regulated DEGs) out of the 48,226 evaluated, the down-regulated DEGS collectively centered around a loss of genes related to mitosis, cell cycle, GO/G1–G1/S transition, and DNA replication. These data were also observed with digital florescence cytometry and flow cytometry, both corroborating a G0/G1 phase blockage. In conclusion, the findings in this work suggest there is an unknown element linking LDH enzyme activity to cell cycle progression, and this factor is completely independent of lactic acid. The data also establish that complete inhibition of LDH in cancer cells is not a detriment to cell viability or basic production of energy.


2019 ◽  
Vol 45 (11) ◽  
pp. 2984-2992 ◽  
Author(s):  
Lifen Xie ◽  
Xiaolan Feng ◽  
Minying Huang ◽  
Kun Zhang ◽  
Quanhong Liu

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Qian Zhang ◽  
Wen Wang ◽  
Hongyuan Shen ◽  
Hongyu Tao ◽  
Yating Wu ◽  
...  

AbstractThe metastasis of breast cancer is believed to have a negative effect on its prognosis. Benefiting from the remarkable deep-penetrating and noninvasive characteristics, sonodynamic therapy (SDT) demonstrates a whole series of potential leading to cancer treatment. To relieve the limitation of monotherapy, a multifunctional nanoplatform has been explored to realize the synergistic treatment efficiency. Herein, we establish a novel multifunctional nano-system which encapsulates chlorin e6 (Ce6, for SDT), perfluoropentane (PFP, for ultrasound imaging), and docetaxel (DTX, for chemotherapy) in a well-designed PLGA core–shell structure. The synergistic Ce6/PFP/DTX/PLGA nanoparticles (CPDP NPs) featured with excellent biocompatibility and stability primarily enable its further application. Upon low-intensity focused ultrasound (LIFU) irradiation, the enhanced ultrasound imaging could be revealed both in vitro and in vivo. More importantly, combined with LIFU, the nanoparticles exhibit intriguing antitumor capability through Ce6-induced cytotoxic reactive oxygen species as well as DTX releasing to generate a concerted therapeutic efficiency. Furthermore, this treating strategy actives a strong anti-metastasis capability by which lung metastatic nodules have been significantly reduced. The results indicate that the SDT-oriented nanoplatform combined with chemotherapy could be provided as a promising approach in elevating effective synergistic therapy and suppressing lung metastasis of breast cancer.


RSC Advances ◽  
2016 ◽  
Vol 6 (102) ◽  
pp. 100361-100372 ◽  
Author(s):  
Guoyun Wan ◽  
Yang Liu ◽  
Shurui Shi ◽  
Bowei Chen ◽  
Yue Wang ◽  
...  

HPDF nanomicells reversed drug resistance of MCF-7/ADR cells by combining sonodynamic therapy and chemotherapy.


Sign in / Sign up

Export Citation Format

Share Document