scholarly journals Protective immune responses elicited by immunization with a chimeric blood-stage malaria vaccine persist but are not boosted by Plasmodium yoelii challenge infection

Vaccine ◽  
2010 ◽  
Vol 28 (42) ◽  
pp. 6876-6884 ◽  
Author(s):  
James R. Alaro ◽  
Michele M. Lynch ◽  
James M. Burns
Parasitology ◽  
2016 ◽  
Vol 143 (2) ◽  
pp. 208-223 ◽  
Author(s):  
DANIELLE I. STANISIC ◽  
MICHAEL F. GOOD

SUMMARYNaturally acquired immunity to the blood-stage of the malaria parasite develops slowly in areas of high endemicity, but is not sterilizing. It manifests as a reduction in parasite density and clinical symptoms. Immunity as a result of blood-stage vaccination has not yet been achieved in humans, although there are many animal models where vaccination has been successful. The development of a blood-stage vaccine has been complicated by a number of factors including limited knowledge of human-parasite interactions and which antigens and immune responses are critical for protection. Opinion is divided as to whether this vaccine should aim to accelerate the acquisition of responses acquired following natural exposure, or whether it should induce a different response. Animal and experimental human models suggest that cell-mediated immune responses can control parasite growth, but these responses can also contribute to significant immunopathology if unregulated. They are largely ignored in most blood-stage malaria vaccine development strategies. Here, we discuss key observations relating to cell-mediated immune responses in the context of experimental human systems and field studies involving naturally exposed individuals and how this may inform the development of a blood-stage malaria vaccine.


Vaccine ◽  
2009 ◽  
Vol 27 (31) ◽  
pp. 4104-4109 ◽  
Author(s):  
Ruth D. Ellis ◽  
Gregory E.D. Mullen ◽  
Mark Pierce ◽  
Laura B. Martin ◽  
Kazutoyo Miura ◽  
...  

2013 ◽  
Vol 82 (1) ◽  
pp. 152-164 ◽  
Author(s):  
K. Sony Reddy ◽  
Alok K. Pandey ◽  
Hina Singh ◽  
Tajali Sahar ◽  
Amlabu Emmanuel ◽  
...  

ABSTRACTPlasmodium falciparumreticulocyte binding-like homologous protein 5 (PfRH5) is an essential merozoite ligand that binds with its erythrocyte receptor, basigin. PfRH5 is an attractive malaria vaccine candidate, as it is expressed by a wide number ofP. falciparumstrains, cannot be genetically disrupted, and exhibits limited sequence polymorphisms. Viral vector-induced PfRH5 antibodies potently inhibited erythrocyte invasion. However, it has been a challenge to generate full-length recombinant PfRH5 in a bacterial-cell-based expression system. In this study, we have produced full-length recombinant PfRH5 inEscherichia colithat exhibits specific erythrocyte binding similar to that of the native PfRH5 parasite protein and also, importantly, elicits potent invasion-inhibitory antibodies against a number ofP. falciparumstrains. Antibasigin antibodies blocked the erythrocyte binding of both native and recombinant PfRH5, further confirming that they bind with basigin. We have thus successfully produced full-length PfRH5 as a functionally active erythrocyte binding recombinant protein with a conformational integrity that mimics that of the native parasite protein and elicits potent strain-transcending parasite-neutralizing antibodies.P. falciparumhas the capability to develop immune escape mechanisms, and thus, blood-stage malaria vaccines that target multiple antigens or pathways may prove to be highly efficacious. In this regard, antibody combinations targeting PfRH5 and other key merozoite antigens produced potent additive inhibition against multiple worldwideP. falciparumstrains. PfRH5 was immunogenic when immunized with other antigens, eliciting potent invasion-inhibitory antibody responses with no immune interference. Our results strongly support the development of PfRH5 as a component of a combination blood-stage malaria vaccine.


2016 ◽  
Vol 213 (8) ◽  
pp. 1419-1428 ◽  
Author(s):  
Claudia Demarta-Gatsi ◽  
Leanna Smith ◽  
Sabine Thiberge ◽  
Roger Peronet ◽  
Pierre-Henri Commere ◽  
...  

Although most vaccines against blood stage malaria in development today use subunit preparations, live attenuated parasites confer significantly broader and more lasting protection. In recent years, Plasmodium genetically attenuated parasites (GAPs) have been generated in rodent models that cause self-resolving blood stage infections and induce strong protection. All such GAPs generated so far bear mutations in housekeeping genes important for parasite development in red blood cells. In this study, using a Plasmodium berghei model compatible with tracking anti–blood stage immune responses over time, we report a novel blood stage GAP that lacks a secreted factor related to histamine-releasing factor (HRF). Lack of HRF causes an IL-6 increase, which boosts T and B cell responses to resolve infection and leave a cross-stage, cross-species, and lasting immunity. Mutant-induced protection involves a combination of antiparasite IgG2c antibodies and FcγR+ CD11b+ cell phagocytes, especially neutrophils, which are sufficient to confer protection. This immune-boosting GAP highlights an important role of opsonized parasite-mediated phagocytosis, which may be central to protection induced by all self-resolving blood stage GAP infections.


PLoS ONE ◽  
2009 ◽  
Vol 4 (3) ◽  
pp. e4708 ◽  
Author(s):  
Bernhards R. Ogutu ◽  
Odika J. Apollo ◽  
Denise McKinney ◽  
Willis Okoth ◽  
Joram Siangla ◽  
...  

2009 ◽  
Vol 59 (6) ◽  
pp. S427-S428
Author(s):  
Anna Goodman ◽  
Sarah Gilbert ◽  
Stefano Colloca ◽  
Matthew Dicks ◽  
Adrian Hill ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document