Isolation of a naturally occurring vaccine/wild-type recombinant bovine herpesvirus type 1 (BoHV-1) from an aborted bovine fetus

Vaccine ◽  
2019 ◽  
Vol 37 (32) ◽  
pp. 4518-4524 ◽  
Author(s):  
Jean M. d'Offay ◽  
Robert W. Fulton ◽  
Mark Fishbein ◽  
R. Eberle ◽  
Edward J. Dubovi
2009 ◽  
Vol 84 (1) ◽  
pp. 445-458 ◽  
Author(s):  
Vladislav A. Lobanov ◽  
Sheryl L. Maher-Sturgess ◽  
Marlene G. Snider ◽  
Zoe Lawman ◽  
Lorne A. Babiuk ◽  
...  

ABSTRACT Tegument protein VP8 encoded by the UL47 gene of bovine herpesvirus type 1 (BHV-1) is the most abundant constituent of mature virions. In the present report, we describe the characterization of UL47 gene-deleted BHV-1 in cultured cells and its natural host. The UL47 deletion mutant exhibited reduced plaque size and more than 100-fold decrease in intracellular and extracellular viral titers in cultured cells. Ultrastructural observations of infected cells showed normal maturation of BHV-1 virions in the absence of VP8. There was no evidence for a change in immediate-early gene activator function of VP16 in the UL47 deletion mutant virus-infected cells, since bovine ICP4 mRNA and protein levels were similar to those in the wild-type and revertant virus-infected cells throughout the course of infection. Whereas VP16, glycoprotein C (gC), gB, and VP5 were expressed to wild-type levels in the UL47 deletion mutant-infected cells, the gD and VP22 protein levels were significantly reduced. The reduction in gD protein was associated with increased turnover of the protein. Furthermore, some of the analyzed early and late proteins were expressed with earlier kinetics in the absence of VP8. Extracellular virions of the UL47 deletion mutant contained reduced amounts of gD, gB, gC, and VP22 but similar amounts of VP16 compared to those of wild-type or revertant virus particles. In addition, the UL47 gene product was indispensable for BHV-1 replication in vivo, since no clinical manifestations or viral shedding were detected in the UL47 deletion mutant-infected calves, and the virus failed to induce significant levels of humoral and cellular immunity.


1999 ◽  
Vol 37 (8) ◽  
pp. 2498-2507 ◽  
Author(s):  
Monika Fuchs ◽  
Peter Hübert ◽  
Jan Detterer ◽  
Hanns-Joachim Rziha

In the present study, we report for the first time on the detection of bovine herpesvirus type 1 (BHV-1) in whole-blood samples derived from naturally infected cattle. Sensitive PCR assays specific for glycoprotein B (gB), gC, and gE of BHV-1 allow the detection of one BHV-1 DNA copy in 105 to 107 peripheral blood leukocytes (PBLs). The incidence of BHV-1-positive PBLs in naturally infected cattle appears to be quite high (92.2% positive PBLs among all samples tested), although in most cases only between 10−5 and 10−7 positive leukocytes were present. The results demonstrate that the viral DNA is detectable not only in the peripheral blood of acutely infected animals but, more importantly, also in the peripheral blood of subclinically infected cattle. The gE-specific PCR described in the report allows discrimination between wild-type (WT) virus-infected and vaccinated animals, which is of importance for control programs that use the recently introduced vaccination strategy with a gE-negative virus. The results further show that doubtful serological results can be verified or falsified and that individual animals can be monitored for the presence or absence of WT BHV-1 or gE-negative virus in cattle herds. The PCR protocols allow the detection of BHV-1 prior to seroconversion or in BHV-1-seronegative cattle. Finally, the results indicate the simultaneous presence of WT and gE-negative vaccine virus in the PBLs of several cattle. Therefore, investigations of viremia in naturally and experimentally infected cattle and on the identification of infected cell types of bovine PBLs can be now performed.


2011 ◽  
Vol 152 (3-4) ◽  
pp. 270-279 ◽  
Author(s):  
S.I. Chowdhury ◽  
M.C.S. Brum ◽  
C. Coats ◽  
A. Doster ◽  
Huiyong Wei ◽  
...  

2017 ◽  
Vol 38 (6) ◽  
pp. 3915
Author(s):  
Greice Japolla ◽  
Ana Flávia Batista Penido ◽  
Greyciele Rodrigues Almeida ◽  
Luiz Artur Mendes Bataus ◽  
Jair Pereira Cunha Junior ◽  
...  

The specificity of monoclonal antibodies (mAbs) to desired targets makes these molecules suitable for therapeutic and diagnostic uses against a wide range of pathogens. Phage display antibody libraries offer one method by which mAbs can be selected for, without the use of conventional hybridoma technology. In this work, phage display technology was used to construct, select and characterize a combinatorial single chain fragment variable (scFv) antibody library against bovine herpesvirus type 1 (BoHV-1) from the immune repertoire of chickens immunized with the virus. In silico analysis of the hypervariable domains of the antibody heavy chains revealed a high frequency of scFv fragments with low variability, suggesting that selection had probably been carried out and favored by a few im-munogenic viral antigens. The reactivity of the scFv fragments selected against BoHV-1 was demon-strated by Phage-ELISA. A significant increase in antibody reactivity to the target was observed after six rounds of library selection, showing its potential use as a molecule for BoHV-1 diagnosis. The strategy described here opens up a field for the use of phage display as a tool for selection of mono-clonal antibodies that could be used for theranostic applications against infectious and parasitic dis-eases of veterinary interest.


Sign in / Sign up

Export Citation Format

Share Document