Comparison of Chlamydia outer membrane complex to recombinant outer membrane proteins as vaccine

Vaccine ◽  
2020 ◽  
Vol 38 (16) ◽  
pp. 3280-3291 ◽  
Author(s):  
Hong Yu ◽  
Karuna P. Karunakaran ◽  
Xiaozhou Jiang ◽  
Queenie Chan ◽  
Caren Rose ◽  
...  
2011 ◽  
Vol 194 (3) ◽  
pp. 387-395 ◽  
Author(s):  
Thomas Becker ◽  
Lena-Sophie Wenz ◽  
Vivien Krüger ◽  
Waltraut Lehmann ◽  
Judith M. Müller ◽  
...  

The mitochondrial outer membrane contains translocase complexes for the import of precursor proteins. The translocase of the outer membrane complex functions as a general preprotein entry gate, whereas the sorting and assembly machinery complex mediates membrane insertion of β-barrel proteins of the outer membrane. Several α-helical outer membrane proteins are known to carry multiple transmembrane segments; however, only limited information is available on the biogenesis of these proteins. We report that mitochondria lacking the mitochondrial import protein 1 (Mim1) are impaired in the biogenesis of multispanning outer membrane proteins, whereas overexpression of Mim1 stimulates their import. The Mim1 complex cooperates with the receptor Tom70 in binding of precursor proteins and promotes their insertion and assembly into the outer membrane. We conclude that the Mim1 complex plays a central role in the import of α-helical outer membrane proteins with multiple transmembrane segments.


1999 ◽  
Vol 67 (1) ◽  
pp. 375-383 ◽  
Author(s):  
Katrine Knudsen ◽  
Anna Sofie Madsen ◽  
Per Mygind ◽  
Gunna Christiansen ◽  
Svend Birkelund

ABSTRACT Two genes encoding 97- to 99-kDa Chlamydia pneumoniaeVR1310 outer membrane proteins (Omp4 and Omp5) with mutual similarity were cloned and sequenced. The proteins were shown to be constituents of the C. pneumoniae outer membrane complex, and the deduced amino acid sequences were similar to those of putative outer membrane proteins encoded by the Chlamydia psittaci andChlamydia trachomatis gene families. By use of a monospecific polyclonal antibody against purified recombinant Omp4, it was shown that without heating, the protein migrated at 65 to 75 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Immunoelectron microscopy showed that epitopes of Omp4 were exposed on the surface of C. pneumoniae elementary bodies, reticulate bodies, and outer membrane complex. Proteins encoded by the C. pneumoniae gene family seem to be dominant antigens in experimentally infected mice.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 451
Author(s):  
Pablo Mier ◽  
Miguel A. Andrade-Navarro

Low complexity regions (LCRs) in proteins are characterized by amino acid frequencies that differ from the average. These regions evolve faster and tend to be less conserved between homologs than globular domains. They are not common in bacteria, as compared to their prevalence in eukaryotes. Studying their conservation could help provide hypotheses about their function. To obtain the appropriate evolutionary focus for this rapidly evolving feature, here we study the conservation of LCRs in bacterial strains and compare their high variability to the closeness of the strains. For this, we selected 20 taxonomically diverse bacterial species and obtained the completely sequenced proteomes of two strains per species. We calculated all orthologous pairs for each of the 20 strain pairs. Per orthologous pair, we computed the conservation of two types of LCRs: compositionally biased regions (CBRs) and homorepeats (polyX). Our results show that, in bacteria, Q-rich CBRs are the most conserved, while A-rich CBRs and polyA are the most variable. LCRs have generally higher conservation when comparing pathogenic strains. However, this result depends on protein subcellular location: LCRs accumulate in extracellular and outer membrane proteins, with conservation increased in the extracellular proteins of pathogens, and decreased for polyX in the outer membrane proteins of pathogens. We conclude that these dependencies support the functional importance of LCRs in host–pathogen interactions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Agnieszka Maszewska ◽  
Magdalena Moryl ◽  
Junli Wu ◽  
Bin Liu ◽  
Lu Feng ◽  
...  

AbstractModification of outer membrane proteins (OMPs) is the first line of Gram-negative bacteria defence against antimicrobials. Here we point to Proteus mirabilis OMPs and their role in antibiotic and phage resistance. Protein profiles of amikacin (AMKrsv), phage (Brsv) and amikacin/phage (AMK/Brsv) resistant variants of P. mirabilis were compared to that obtained for a wild strain. In resistant variants there were identified 14, 1, 5 overexpressed and 13, 5, 1 downregulated proteins for AMKrsv, Brsv and AMK/Brsv, respectively. Application of phages with amikacin led to reducing the number of up- and downregulated proteins compared to single antibiotic treatment. Proteins isolated in AMKrsv are involved in protein biosynthesis, transcription and signal transduction, which correspond to well-known mechanisms of bacteria resistance to aminoglycosides. In isolated OMPs several cytoplasmic proteins, important in antibiotic resistance, were identified, probably as a result of environmental stress, e.g. elongation factor Tu, asparaginyl-tRNA and aspartyl-tRNA synthetases. In Brsv there were identified: NusA and dynamin superfamily protein which could play a role in bacteriophage resistance. In the resistant variants proteins associated with resistance mechanisms occurring in biofilm, e.g. polyphosphate kinase, flagella basal body rod protein were detected. These results indicate proteins important in the development of P. mirabilis antibiofilm therapies.


2009 ◽  
Vol 106 (6) ◽  
pp. 2079-2085 ◽  
Author(s):  
D.-Y. Kao ◽  
Y.-C. Cheng ◽  
T.-Y. Kuo ◽  
S.-B. Lin ◽  
C.-C. Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document