Tailoring of titanium thin film properties in high power pulsed magnetron sputtering

Vacuum ◽  
2018 ◽  
Vol 150 ◽  
pp. 144-154 ◽  
Author(s):  
Baohua Wu ◽  
Yan Yu ◽  
Jian Wu ◽  
Ivan Shchelkanov ◽  
David N. Ruzic ◽  
...  
Vacuum ◽  
2019 ◽  
Vol 160 ◽  
pp. 410-417 ◽  
Author(s):  
D.L. Ma ◽  
H.Y. Liu ◽  
Q.Y. Deng ◽  
W.M. Yang ◽  
K. Silins ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 579
Author(s):  
Donglin Ma ◽  
Qiaoyuan Deng ◽  
Huaiyuan Liu ◽  
Yongxiang Leng

Titanium nitride (Ti-N) thin films are electrically and thermally conductive and have high hardness and corrosion resistance. Dense and defect-free Ti-N thin films have been widely used in the surface modification of cutting tools, wear resistance components, medical implantation devices, and microelectronics. In this study, Ti-N thin films were deposited by high power pulsed magnetron sputtering (HPPMS) and their plasma characteristics were analyzed. The ion energy of Ti species was varied by adjusting the substrate bias voltage, and its effect on the microstructure, residual stress, and adhesion of the thin films were studied. The results show that after the introduction of nitrogen gas, a Ti-N compound layer was formed on the surface of the Ti target, which resulted in an increase in the Ti target discharge peak power. In addition, the total flux of the Ti species decreased, and the ratio of the Ti ions increased. The Ti-N thin film deposited by HPPMS was dense and defect-free. When the energy of the Ti ions was increased, the grain size and surface roughness of the Ti-N film decreased, the residual stress increased, and the adhesion strength of the Ti-N thin film decreased.


2019 ◽  
Vol 375 ◽  
pp. 352-362 ◽  
Author(s):  
Vladislav A. Grudinin ◽  
Galina A. Bleykher ◽  
Dmitrii V. Sidelev ◽  
Valery P. Krivobokov ◽  
Massimiliano Bestetti ◽  
...  

2021 ◽  
pp. 138792
Author(s):  
K. Bobzin ◽  
T. Brögelmann ◽  
N.C. Kruppe ◽  
M. Engels ◽  
C. Schulze

Author(s):  
Niklas Bönninghoff ◽  
Wahyu Diyatmika ◽  
Jinn P. Chu ◽  
Stanislav Mráz ◽  
Jochen M. Schneider ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document