Microstructural, wear and corrosion characteristics of boronized AISI 904L superaustenitic stainless steel

Vacuum ◽  
2021 ◽  
Vol 187 ◽  
pp. 110145
Author(s):  
Melik Çetin ◽  
Ali Günen ◽  
Müge Kalkandelen ◽  
Mustafa Serdar Karakaş
2010 ◽  
Vol 204 (18-19) ◽  
pp. 3087-3090 ◽  
Author(s):  
F.A.P. Fernandes ◽  
S.C. Heck ◽  
R.G. Pereira ◽  
C.A. Picon ◽  
P.A.P. Nascente ◽  
...  

Alloy Digest ◽  
2000 ◽  
Vol 49 (8) ◽  

Abstract Allegheny Ludlum Type 420 is a hardenable, straight-chromium stainless steel with wear and corrosion resistance. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and machining. Filing Code: SS-801. Producer or source: Allegheny Ludlum Corporation.


Alloy Digest ◽  
2005 ◽  
Vol 54 (4) ◽  

Abstract Nirosta 4031 (Type 420) is a martensitic grade of stainless steel that is heat treatable and has wear and corrosion resistance. It is predominately used in the quenched-and-tempered condition. Typical applications are blades and shears for all types of cutting. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: SS-925. Producer or source: ThyssenKrupp Nirosta GmbH.


2015 ◽  
Vol 20 (1) ◽  
pp. 160-168 ◽  
Author(s):  
Fabiana Cristina Nascimento Borges ◽  
Willian Rafael de Oliveira ◽  
Jonas Kublitski

The superaustenitic stainless steel presents several technological applications, mainly in corrosive environments. The different phase precipitation might alter some of its mechanical properties. Such alterations affect several factors, including the working life of the material under adverse working conditions. In this study, Instrumented Indentation techniques, Tribology and X-ray diffraction (XRD) were used to evaluate alterations in regions close to the surface. The parameters analyzed were: hardness and elastic modulus (instrumented indentation), friction coefficient (tribology) and structural alterations of the unit cell of the identified phases (XRD - Rietveld Refinement). All properties analyzed were compared with those of common austenitic steel. The presence of σ-phase (space group P42mnm) and γ-austenite (space group Fm3m) were detected. Data analyzed indicated that the presence of σ-phase caused small alteration in properties such as hardness in regions close to the surface. In the regions farther from the surface (material bulk) data can be compared to that of conventional austenitic steel.


Sign in / Sign up

Export Citation Format

Share Document