Remarkable low temperature catalytic activity for SCR of NO with propylene under oxygen-rich conditions over Mn0.2La0.07Ce0.05Ox/ZSM-5 catalyst

Vacuum ◽  
2021 ◽  
pp. 110174
Author(s):  
Junqiang Xu ◽  
Tian Tang ◽  
Qiang Zhang ◽  
Chuan Zhang ◽  
Fang Guo
2014 ◽  
Vol 875-877 ◽  
pp. 213-217 ◽  
Author(s):  
Mohd Razali Sohot ◽  
Umi Sarah Jais ◽  
Muhd Rosli Sulaiman

Selective catalytic reduction (SCR) is a well-proven method to reduce NO emission. However, to choose the right catalyst that provides a surface for reaction between NO and ammonia at low temperatures is a challenging task for a catalysts developers. In an earlier study, we prepared V2O5-CeO2-SiO2 catalyst with increasing V2O5 content by sol-gel route and found that the catalytic activity improved with increasing the V2O5 loading up to 0.5%. The catalytic activity, however, dropped when V2O5 loading was about 1% and increased back when the loading of V2O5 was about 5%. In this study, we looked into the microstructural relationship to explain these findings. The microstructures of the catalysts before and after exposure to NO gas revealed that the catalysts with 0.2% and 0.5% V2O5 were more porous after the reduction process possibly due to improved breakdown of (NH4)HCO3 to NH3 by the possible interaction with the V2O5 and CeO2-containing catalysts which consequently resulted in a more efficient NO reduction to N2 and H2O at low temperature. The microstructure of the catalyst with 1% V2O5 content to 5%, improved back the efficiency although clogging by CeVO4 phase still possible due to its presence based on XRD. The well-ordered micropores before exposure to NO and the more efficient breakdown of (NH4)HCO3 could have contributed to increase back the catalytic activity at low temperature.


2014 ◽  
Vol 633 ◽  
pp. 121-124 ◽  
Author(s):  
Liang Jing Zhang ◽  
Su Ping Cui ◽  
Hong Xia Guo ◽  
Xiao Yu Ma ◽  
Xiao Gen Luo

Catalysts of Mn/TiO2 and Mn-Ce /TiO2 prepared by co-precipitation method for low temperature selective catalytic reduction (SCR) of NO with NH3 were investigated in this study. The experimental results showed that co-precipitation method after improvement, the NO conversion of Mn-Ce/TiO2 catalyst increased sharply. Meanwhile, the addition of cerium has significant effects on the catalytic activity. Characterizations of catalysts were carried out by XRD, BET and H2-TPR. The characterized results indicated that co-precipitation method after improvement, in temperature windows 150 to 300 °C, showed higher NOx conversion.


2017 ◽  
Vol 898 ◽  
pp. 1896-1904
Author(s):  
Jun Lin Xie ◽  
Feng Xiang Li ◽  
Hai Feng Cui ◽  
Feng He ◽  
Kai Qi

A series of spherical-like MnOx/TiO2 catalysts with F-doped were prepared by using sol-gel method and investigated for low-temperature selective catalytic reduction (SCR) of NOx with NH3 at the temperature ranging from 100 °C to 200 °C. The 0.07Ce-MnOx/TiO2 catalyst shows the highest activity and yields 95% NO conversion at 200 °C. With the help of XRD, TGA, H2-TPR, NH3-TPD, BET and TEM, the structures and properties of the catalysts were characterized. The results show that it is a fine modifier for TiO2 support with appropriate amounts of F doping, and F ions can enter into TiO2 lattice, reducing the formation of rutile TiO2 and the crystallization of MnOx. However, MnTiO3 was generated in the catalysts with excess F doping. This would cause larger diameter of spherical particle and smaller surface area. But the amounts of the surface acid sites increased, and the reduction ability of catalysts was enhanced, which is beneficial for catalytic activity of the catalysts.


2014 ◽  
Vol 2 (48) ◽  
pp. 20486-20493 ◽  
Author(s):  
Sihui Zhan ◽  
Mingying Qiu ◽  
Shanshan Yang ◽  
Dandan Zhu ◽  
Hongbing Yu ◽  
...  

MnO2 doped Fe2O3 hollow nanofibers were successfully synthesized by the electrospinning method, which exhibit superior catalytic activity for low temperature NH3-SCR.


Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 873 ◽  
Author(s):  
Zenghui Su ◽  
Shan Ren ◽  
Zhichao Chen ◽  
Jie Yang ◽  
Yuhan Zhou ◽  
...  

In this study, the poisoning effect of CaO on activated carbon (AC)-based Mn-Ce catalysts was discussed. Loading CaO inhibited the catalytic activity of the catalyst and the NO conversion of the catalyst decreased from 69.5% to 38.2% at 75 °C. The amount of MnO2 in AC surface decreased in the process of loading CaO, which was detrimental to the Selective Catalytic Reduction (SCR) performance of the catalyst. The change of manganese oxide form inhibited generation rate for the chemisorption oxygen and NO2, which was the most critical reason for the decrease of catalytic activity. Besides, loaded CaO entered into the pores of the catalyst, which led to the blockage of the pores and further resulted in the decrease of the Brunauer-Emmett-Teller (BET) surface area and total pore volume. It also destroyed the oxygen-containing functional groups and acid site on the surface of AC. All of these caused the deactivation of Mn-Ce/AC catalyst after loading CaO.


2017 ◽  
Vol 411 ◽  
pp. 338-346 ◽  
Author(s):  
Ge Gao ◽  
Jian-Wen Shi ◽  
Chang Liu ◽  
Chen Gao ◽  
Zhaoyang Fan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document