Modification of Nano Spherical-Like MnOx/TiO2 Catalysts with F-Doped

2017 ◽  
Vol 898 ◽  
pp. 1896-1904
Author(s):  
Jun Lin Xie ◽  
Feng Xiang Li ◽  
Hai Feng Cui ◽  
Feng He ◽  
Kai Qi

A series of spherical-like MnOx/TiO2 catalysts with F-doped were prepared by using sol-gel method and investigated for low-temperature selective catalytic reduction (SCR) of NOx with NH3 at the temperature ranging from 100 °C to 200 °C. The 0.07Ce-MnOx/TiO2 catalyst shows the highest activity and yields 95% NO conversion at 200 °C. With the help of XRD, TGA, H2-TPR, NH3-TPD, BET and TEM, the structures and properties of the catalysts were characterized. The results show that it is a fine modifier for TiO2 support with appropriate amounts of F doping, and F ions can enter into TiO2 lattice, reducing the formation of rutile TiO2 and the crystallization of MnOx. However, MnTiO3 was generated in the catalysts with excess F doping. This would cause larger diameter of spherical particle and smaller surface area. But the amounts of the surface acid sites increased, and the reduction ability of catalysts was enhanced, which is beneficial for catalytic activity of the catalysts.

2016 ◽  
Vol 697 ◽  
pp. 275-278 ◽  
Author(s):  
Yu Xin Deng ◽  
Xin Chen ◽  
Rong Shao ◽  
Li Ming Hu ◽  
Jie Tang ◽  
...  

A systematic investigation of the effect of WO3 loading over V2O5/TiO2 catalysts was carried out for the selective catalytic reduction of NO by NH3. The characteristics were examined use BET surface area , X-ray diffractometry (XRD) , Temperature programmed desorption (TPD) of NH3 . It was fund that the WO3 species could interact with the TiO2 anatase phase to exhibits a high activity. With increasing WO3 content ,the activity of V-W/TiO2 for the selective catalytic reduction of NO by NH3 was improved at low temperatures in the range of 3~7%. The results showed that the adding of WO3 to V2O5/TiO2 could result in exposing acid sites of catalysts doped WO3 at low temperature. Furthermore, especially the catalytic activity of VW7Ti showed higher than 80% at 180 °C. However, the catalytic BET surface area and the mass of acid sites not play a leading role for improving low-temperature activity of VWTi in this paper.


2014 ◽  
Vol 875-877 ◽  
pp. 213-217 ◽  
Author(s):  
Mohd Razali Sohot ◽  
Umi Sarah Jais ◽  
Muhd Rosli Sulaiman

Selective catalytic reduction (SCR) is a well-proven method to reduce NO emission. However, to choose the right catalyst that provides a surface for reaction between NO and ammonia at low temperatures is a challenging task for a catalysts developers. In an earlier study, we prepared V2O5-CeO2-SiO2 catalyst with increasing V2O5 content by sol-gel route and found that the catalytic activity improved with increasing the V2O5 loading up to 0.5%. The catalytic activity, however, dropped when V2O5 loading was about 1% and increased back when the loading of V2O5 was about 5%. In this study, we looked into the microstructural relationship to explain these findings. The microstructures of the catalysts before and after exposure to NO gas revealed that the catalysts with 0.2% and 0.5% V2O5 were more porous after the reduction process possibly due to improved breakdown of (NH4)HCO3 to NH3 by the possible interaction with the V2O5 and CeO2-containing catalysts which consequently resulted in a more efficient NO reduction to N2 and H2O at low temperature. The microstructure of the catalyst with 1% V2O5 content to 5%, improved back the efficiency although clogging by CeVO4 phase still possible due to its presence based on XRD. The well-ordered micropores before exposure to NO and the more efficient breakdown of (NH4)HCO3 could have contributed to increase back the catalytic activity at low temperature.


2014 ◽  
Vol 633 ◽  
pp. 121-124 ◽  
Author(s):  
Liang Jing Zhang ◽  
Su Ping Cui ◽  
Hong Xia Guo ◽  
Xiao Yu Ma ◽  
Xiao Gen Luo

Catalysts of Mn/TiO2 and Mn-Ce /TiO2 prepared by co-precipitation method for low temperature selective catalytic reduction (SCR) of NO with NH3 were investigated in this study. The experimental results showed that co-precipitation method after improvement, the NO conversion of Mn-Ce/TiO2 catalyst increased sharply. Meanwhile, the addition of cerium has significant effects on the catalytic activity. Characterizations of catalysts were carried out by XRD, BET and H2-TPR. The characterized results indicated that co-precipitation method after improvement, in temperature windows 150 to 300 °C, showed higher NOx conversion.


2014 ◽  
Vol 898 ◽  
pp. 447-451 ◽  
Author(s):  
Yun Xiao Teng ◽  
Cun Yi Song ◽  
Xi Ning Lu ◽  
Zhen Song Tong ◽  
Yu San Qin

Fe-Ce-Mn catalysts loaded on TiO2-ZrO2materials were prepared by sol-gel method and then were investigated for low temperature selective catalytic reduction (SCR) of NO with NH3. It was found that the NO conversions over Fe-Ce-Mn/TiO2-ZrO2was slightly improved compared with that over Ce-Mn/TiO2-ZrO2. The results showed that 96% NO conversion was obtained over Fe-Ce-Mn/TiO2-ZrO2with the molar ratio of Fe/Mn=0.3. A comparative study of Fe-Ce-Mn/TiO2- ZrO2and Ce-Mn/TiO2-ZrO2for NO conversions at 140°C in the presence of H2O and SO2proved that Fe-Ce-Mn/TiO2-ZrO2exhibited higher resistance to H2O and SO2than that of without Fe catalysts. In addition, Fe-Ce-Mn/TiO2-ZrO2presented 90.49% NO conversion after cutting off the injection of SO2and H2O.


2019 ◽  
Vol 35 (2) ◽  
pp. 239-264 ◽  
Author(s):  
Naveed Husnain ◽  
Enlu Wang ◽  
Kai Li ◽  
Muhammad Tuoqeer Anwar ◽  
Aamir Mehmood ◽  
...  

Abstract Selective catalytic reduction (SCR) is now an established NOx removal technology for industrial flue gas as well as for diesel engine exhaust gas. However, it is still a big challenge to develop a novel low-temperature catalyst for NH3-SCR of NOx, especially at a temperature below 200°C. In the past few years, many studies have demonstrated the potential of iron (Fe)-based catalysts as low-temperature catalysts for NH3-SCR of NOx. Herein, we summarize the recent progress and performance of Fe-based catalysts for low-temperature NH3-SCR of NOx. Catalysts are divided into three categories: single FexOy, Fe-based multimetal oxide, and Fe-based multimetal oxide with support catalysts. The catalytic activity and selectivity of Fe-based catalysts are systematically analyzed and summarized in light of some key factors such as activation energy, specific surface area, morphology, crystallinity, preparation method and precursor, acid sites, calcination temperature, other metal dopant/substitute, and redox property of catalysts. In addition, H2O/SO2 tolerance and the NH3-SCR reaction mechanism over Fe-based catalysts, including Eley-Rideal and Langmuir-Hinshelwood mechanism, are emphasized. Lastly, the perspectives and future research directions of low-temperature NH3-SCR of NOx are also proposed.


Author(s):  
Huiling Zheng ◽  
Renjie Li ◽  
Chengming Zhong ◽  
Zhi Li ◽  
Yikun Kang ◽  
...  

Many transition metal oxides supported on TiO2 have been studied for selective catalytic reduction (SCR) of NO with NH3. However, the trade-off exists between the low-temperature activity and N2 selectivity....


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 475
Author(s):  
Yabin Wei ◽  
Shuangling Jin ◽  
Rui Zhang ◽  
Weifeng Li ◽  
Jiangcan Wang ◽  
...  

Novel Mn–Ce–Ti–O composite aerogels with large mesopore size were prepared via a one-pot sol–gel method by using propylene oxide as a network gel inducer and ethyl acetoacetate as a complexing agent. The effect of calcination temperature (400, 500, 600, and 700 °C) on the NH3–selective catalytic reduction (SCR) performance of the obtained Mn–Ce–Ti–O composite aerogels was investigated. The results show that the Mn–Ce–Ti–O catalyst calcined at 600 °C exhibits the highest NH3–SCR activity and lowest apparent activation energy due to its most abundant Lewis acid sites and best reducibility. The NO conversion of the MCTO-600 catalyst maintains 100% at 200 °C in the presence of 100 ppm SO2, showing the superior resistance to SO2 poisoning as compared with the MnOx–CeO2–TiO2 catalysts reported the literature. This should be mainly attributed to its large mesopore sizes with an average pore size of 32 nm and abundant Lewis acid sites. The former fact facilitates the decomposition of NH4HSO4, and the latter fact reduces vapor pressure of NH3. The NH3–SCR process on the MCTO-600 catalyst follows both the Eley–Rideal (E–R) mechanism and the Langmuir–Hinshelwood (L–H) mechanism.


Catalysts ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 202
Author(s):  
Long Lu ◽  
Xueman Wang ◽  
Chunhua Hu ◽  
Ying Liu ◽  
Xiongbo Chen ◽  
...  

Nanosized V-Ce oxides supported on TiO2 (VCT) were prepared and utilized in the low-temperature selective catalytic reduction (SCR) of NO with NH3. Compared with the other V-Ce oxides-based catalysts supported on Al2O3, ZrO2, and ZSM-5, VCT showed the best SCR activity in a low-temperature range. The NOx conversion of 90% could be achieved at 220 °C. Characterizations including X-ray diffraction (XRD), scanning election micrograph (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), temperature-programmed desorption with NH3 (NH3-TPD), and temperature-programmed reduction with H2 (H2-TPR) showed that V1.05Ce1/TiO2 exhibited a good dispersion of V2O5, enrichment of surface Ce3+ and chemical-absorbed oxygen, and excellent redox capacity and acidity, which resulted in the best SCR performance at low temperature.


RSC Advances ◽  
2017 ◽  
Vol 7 (39) ◽  
pp. 24177-24187 ◽  
Author(s):  
Haidi Xu ◽  
Mengmeng Sun ◽  
Shuang Liu ◽  
Yuanshan Li ◽  
Jianli Wang ◽  
...  

The calcined temperature of the carrier obviously affected SCR activity of catalysts, WO3/Ce0.68Zr0.32O2-500 showed the best low-temperature NH3-SCR activity due to its more Lewis acid sites and stronger redox property.


Sign in / Sign up

Export Citation Format

Share Document