scholarly journals Corrigendum to “Clustered epitopes within the Gag–Pol fusion protein DNA vaccine enhance immune responses and protection against challenge with recombinant vaccinia viruses expressing HIV-1 Gag and Pol antigens ” [Virology 332 (2005) 467–479]

Virology ◽  
2005 ◽  
Vol 335 (2) ◽  
pp. 291
Author(s):  
Elizabeth Bolesta ◽  
Jaroslaw Gzyl ◽  
Andrzej Wierzbicki ◽  
Dariusz Kmieciak ◽  
Aleksandra Kowalczyk ◽  
...  
Virology ◽  
2005 ◽  
Vol 332 (2) ◽  
pp. 467-479 ◽  
Author(s):  
Elizabeth Bolesta ◽  
Jaroslaw Gzyl ◽  
Andrzej Wierzbicki ◽  
Dariusz Kmieciak ◽  
Aleksandra Kowalczyk ◽  
...  

2015 ◽  
Vol 23 (3) ◽  
pp. 204-212 ◽  
Author(s):  
Rajesh Thippeshappa ◽  
Baoping Tian ◽  
Brad Cleveland ◽  
Wenjin Guo ◽  
Patricia Polacino ◽  
...  

ABSTRACTHuman immunodeficiency virus type 1 (HIV-1) acquisition occurs predominantly through mucosal transmission. We hypothesized that greater mucosal immune responses and protective efficacy against mucosal HIV-1 infection may be achieved by prime-boost immunization at mucosal sites. We used a macaque model to determine the safety, immunogenicity, and protective efficacy of orally delivered, replication-competent but attenuated recombinant vaccinia viruses expressing full-length HIV-1 SF162 envelope (Env) or simian immunodeficiency virus (SIV) Gag-Pol proteins. We examined the dose and route that are suitable for oral immunization with recombinant vaccinia viruses. We showed that sublingual inoculation of two vaccinia virus-naive pigtailed macaques with 5 × 108PFU of recombinant vaccinia viruses was safe. However, sublingual inoculation with a higher dose or tonsillar inoculation resulted in secondary oral lesions, indicating the need to optimize the dose and route for oral immunization with replication-competent vaccinia virus vectors. Oral priming alone elicited antibody responses to vaccinia virus and to the SF162 Env protein. Intramuscular immunization with the SF162 gp120 protein at either 20 or 21 weeks postpriming resulted in a significant boost in antibody responses in both systemic and mucosal compartments. Furthermore, we showed that immune responses induced by recombinant vaccinia virus priming and intramuscular protein boosting provided protection against intrarectal challenge with the simian-human immunodeficiency virus SHIV-SF162-P4.


mBio ◽  
2015 ◽  
Vol 6 (4) ◽  
Author(s):  
Sunil K. Khattar ◽  
Vinoth Manoharan ◽  
Bikash Bhattarai ◽  
Celia C. LaBranche ◽  
David C. Montefiori ◽  
...  

ABSTRACT Newcastle disease virus (NDV) avirulent strain LaSota was used to coexpress gp160 Env and p55 Gag from a single vector to enhance both Env-specific and Gag-specific immune responses. The optimal transcription position for both Env and Gag genes in the NDV genome was determined by generating recombinant NDV (rNDV)-Env-Gag (gp160 located between the P and M genes and Gag between the HN and L genes), rNDV-Gag-Env (Gag located between the P and M genes and gp160 between the HN and L genes), rNDV-Env/Gag (gp160 followed by Gag located between the P and M genes), and rNDV-Gag/Env (Gag followed by gp160 located between the P and M genes). All the recombinant viruses replicated at levels similar to those seen with parental NDV in embryonated chicken eggs and in chicken fibroblast cells. Both gp160 and Gag proteins were expressed at high levels in cell culture, with gp160 found to be incorporated into the envelope of NDV. The Gag and Env proteins expressed by all the recombinants except rNDV-Env-Gag self-assembled into human immunodeficiency virus type 1 (HIV-1) virus-like particles (VLPs). Immunization of guinea pigs by the intranasal route with these rNDVs produced long-lasting Env- and Gag-specific humoral immune responses. The Env-specific humoral and mucosal immune responses and Gag-specific humoral immune responses were higher in rNDV-Gag/Env and rNDV-Env/Gag than in the other recombinants. rNDV-Gag/Env and rNDV-Env/Gag were also more efficient in inducing cellular as well as protective immune responses to challenge with vaccinia viruses expressing HIV-1 Env and Gag in mice. These results suggest that vaccination with a single rNDV coexpressing Env and Gag represents a promising strategy to enhance immunogenicity and protective efficacy against HIV. IMPORTANCE A safe and effective vaccine that can induce both systemic and mucosal immune responses is needed to control HIV-1. In this study, we showed that coexpression of Env and Gag proteins of HIV-1 performed using a single Newcastle disease virus (NDV) vector led to the formation of HIV-1 virus-like particles (VLPs). Immunization of guinea pigs with recombinant NDVs (rNDVs) elicited potent long-lasting systemic and mucosal immune responses to HIV. Additionally, the rNDVs were efficient in inducing cellular immune responses to HIV and protective immunity to challenge with vaccinia viruses expressing HIV Env and Gag in mice. These results suggest that the use of a single NDV expressing Env and Gag proteins simultaneously is a novel strategy to develop a safe and effective vaccine against HIV.


2001 ◽  
Vol 82 (9) ◽  
pp. 2107-2116 ◽  
Author(s):  
Teresa R. Johnson ◽  
Julie E. Fischer ◽  
Barney S. Graham

Recombinant vaccinia viruses are well-characterized tools that can be used to define novel approaches to vaccine formulation and delivery. While vector co-expression of immune mediators has enormous potential for optimizing the composition of vaccine-induced immune responses, the impact on antigen expression and vector antigenicity must also be considered. Co-expression of IL-4 increased vaccinia virus vector titres, while IFN-γ co-expression reduced vaccinia virus replication in BALB/c mice and in C57BL/6 mice infected with some recombinant viruses. Protection against respiratory syncytial virus (RSV) challenge was similar in mice immunized with vaccinia virus expressing RSV G glycoprotein and IFN-γ, even though the replication efficiency of the vector was diminished. These data demonstrate the ability of vector-expressed cytokine to influence the virulence of the vector and to direct the development of selected immune responses. This suggests that the co-expression of cytokines and other immunomodulators has the potential to improve the safety of vaccine vectors while improving the immunogenicity of vaccine antigens.


2003 ◽  
Vol 77 (2) ◽  
pp. 1163-1174 ◽  
Author(s):  
Ronald L. Willey ◽  
Russ Byrum ◽  
Michael Piatak ◽  
Young B. Kim ◽  
Michael W. Cho ◽  
...  

ABSTRACT An effective vaccine against the human immunodeficiency virus type 1 (HIV-1) will very likely have to elicit both cellular and humoral immune responses to control HIV-1 strains of diverse geographic and genetic origins. We have utilized a pathogenic chimeric simian-human immunodeficiency virus (SHIV) rhesus macaque animal model system to evaluate the protective efficacy of a vaccine regimen that uses recombinant vaccinia viruses expressing simian immunodeficiency virus (SIV) and HIV-1 structural proteins in combination with intact inactivated SIV and HIV-1 particles. Following virus challenge, control animals experienced a rapid and complete loss of CD4+ T cells, sustained high viral loads, and developed clinical disease by 17 to 21 weeks. Although all of the vaccinated monkeys became infected, they displayed reduced postpeak viremia, had no significant loss of CD4+ T cells, and have remained healthy for more than 15 months postinfection. CD8+ T-cell and neutralizing antibody responses in vaccinated animals following challenge were demonstrable. Despite the control of disease, virus was readily isolated from the circulating peripheral blood mononuclear cells of all vaccinees at 22 weeks postchallenge, indicating that immunologic control was incomplete. Virus recovered from the animal with the lowest postchallenge viremia generated high virus loads and an irreversible loss of CD4+ T-cell loss following its inoculation into a naïve animal. These results indicate that despite the protection from SHIV-induced disease, the vaccinated animals still harbored replication-competent and pathogenic virus.


2006 ◽  
Vol 177 (1) ◽  
pp. 177-191 ◽  
Author(s):  
Elizabeth Bolesta ◽  
Aleksandra Kowalczyk ◽  
Andrzej Wierzbicki ◽  
Cheryl Eppolito ◽  
Yutaro Kaneko ◽  
...  

Vaccine ◽  
2012 ◽  
Vol 30 (4) ◽  
pp. 691-702 ◽  
Author(s):  
Saravana K. Kanagavelu ◽  
Victoria Snarsky ◽  
James M. Termini ◽  
Sachin Gupta ◽  
Suzanne Barzee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document