env glycoprotein
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 7)

H-INDEX

16
(FIVE YEARS 0)

2021 ◽  
Vol 12 ◽  
Author(s):  
Yong Zhang ◽  
Shanshan Zheng ◽  
Wanjun Zhao ◽  
Yonghong Mao ◽  
Wei Cao ◽  
...  

Deciphering the glycosylation of the viral envelope (Env) glycoprotein is critical for evaluating viral escape from the host’s immune response and developing vaccines and antiviral drugs. However, it is still challenging to precisely decode the site-specific glycosylation characteristics of the highly glycosylated Env proteins, although glycoproteomics have made significant advances in mass spectrometry techniques and data analysis tools. Here, we present a hybrid dissociation technique, EThcD-sceHCD, by combining electron transfer/higher-energy collisional dissociation (EThcD) and stepped collision energy/higher-energy collisional dissociation (sceHCD) into a sequential glycoproteomic workflow. Following this scheme, we characterized site-specific N/O-glycosylation of the human immunodeficiency virus type 1 (HIV-1) Env protein gp120. The EThcD-sceHCD method increased the number of identified glycopeptides when compared with EThcD, while producing more comprehensive fragment ions than sceHCD for site-specific glycosylation analysis, especially for accurate O-glycosite assignment. Finally, eighteen N-glycosites and five O-glycosites with attached glycans were assigned unambiguously from heavily glycosylated gp120. These results indicate that our workflow can achieve improved performance for analysis of the N/O-glycosylation of a highly glycosylated protein containing numerous potential glycosites in one process. Knowledge of the glycosylation landscape of the Env glycoprotein will be useful for understanding of HIV-1 infection and development of vaccines and drugs.


2021 ◽  
Vol 9 (8) ◽  
pp. 1784
Author(s):  
Giannina Arru ◽  
Grazia Galleri ◽  
Giovanni A. Deiana ◽  
Ignazio R. Zarbo ◽  
Elia Sechi ◽  
...  

Human endogenous retrovirus (HERV)-K env-su glycoprotein has been documented in amyotrophic lateral sclerosis (ALS), where HERV-K env-su 19–37 antibody levels significantly correlated with clinical measures of disease severity. Herein, we investigated further the humoral and cell-mediated immune response against specific antigenic peptides derived from HERV-K in ALS. HERV-K env glycoprotein expression on peripheral blood mononuclear cells (PBMCs) membrane and cytokines and chemokines after stimulation with HERV-K env 19–37 and HERV-K env 109–126 were quantified in patients and healthy controls (HCs). HERV-K env glycoprotein was more expressed in B cells and NK cells of ALS patients compared to HCs, whereas HERV-K env transcripts were similar in ALS and HCs. In ALS patients, specific stimulation with HERV-K env 109–126 peptide showed a higher expression of IL-6 by CD19/B cells. Both peptides, however, were able to induce a great production of IFN-γ by stimulation CD19/B cells, and yielded a higher expression of MIP-1α and a lower expression of MCP-1. HERV-K env 19–37 peptide induced a great production of TNF-α in CD8/T cells. In conclusion, we observed the ability of HERV-K to modulate the immune system, generating mediators mainly involved in proinflammatory response.


Author(s):  
Abhinav Luthra ◽  
Sarwat Cheema ◽  
Stephen Whitney ◽  
Wilfried A.M. Bakker ◽  
Ziv Sandalon ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1515
Author(s):  
Joy Ramielle L. Santos ◽  
Weijie Sun ◽  
Tarana A. Mangukia ◽  
Eduardo Reyes-Serratos ◽  
Marcelo Marcet-Palacios

Despite type 1 human immunodeficiency virus (HIV-1) being discovered in the early 1980s, significant knowledge gaps remain in our understanding of the superstructure of the HIV-1 matrix (MA) shell. Current viral assembly models assume that the MA shell originates via recruitment of group-specific antigen (Gag) polyproteins into a hexagonal lattice but fails to resolve and explain lattice overlapping that occurs when the membrane is folded into a spherical/ellipsoidal shape. It further fails to address how the shell recruits, interacts with and encompasses the viral spike envelope (Env) glycoproteins. These Env glycoproteins are crucial as they facilitate viral entry by interacting with receptors and coreceptors located on T-cells. In our previous publication, we proposed a six-lune hosohedral structure, snowflake-like model for the MA shell of HIV-1. In this article, we improve upon the six-lune hosohedral structure by incorporating into our algorithm the recruitment of complete Env glycoproteins. We generated the Env glycoprotein assembly using a combination of predetermined Env glycoprotein domains from X-ray crystallography, nuclear magnetic resonance (NMR), cryoelectron tomography, and three-dimensional prediction tools. Our novel MA shell model comprises 1028 MA trimers and 14 Env glycoproteins. Our model demonstrates the movement of Env glycoproteins in the interlunar spaces, with effective clustering at the fusion hub, where multiple Env complexes bind to T-cell receptors during the process of viral entry. Elucidating the HIV-1 MA shell structure and its interaction with the Env glycoproteins is a key step toward understanding the mechanism of HIV-1 entry.


PLoS ONE ◽  
2020 ◽  
Vol 15 (6) ◽  
pp. e0231679
Author(s):  
José A. González-Feliciano ◽  
Pearl Akamine ◽  
Coral M. Capó-Vélez ◽  
Manuel Delgado-Vélez ◽  
Vincent Dussupt ◽  
...  
Keyword(s):  
Hiv 1 ◽  

2020 ◽  
Vol 118 (3) ◽  
pp. 151a
Author(s):  
Yen-Cheng Chen ◽  
Chetan Sood ◽  
Mariana Marin ◽  
Jesse Aaron ◽  
Teng-Leong Chew ◽  
...  
Keyword(s):  
Hiv 1 ◽  

2020 ◽  
Vol 94 (7) ◽  
Author(s):  
Shixia Wang ◽  
Yegor Voronin ◽  
Peng Zhao ◽  
Mayumi Ishihara ◽  
Nickita Mehta ◽  
...  

ABSTRACT Envelope (Env) glycoprotein of human immunodeficiency virus type 1 (HIV-1) is an important target for the development of an HIV vaccine. Extensive glycosylation of Env is an important feature that both protects the virus from antibody responses and serves as a target for some highly potent broadly neutralizing antibodies. Therefore, analysis of glycans on recombinant Env proteins is highly significant. Here, we present glycosylation profiles of recombinant gp120 proteins from four major clades of HIV-1 (A, B, C, and AE), produced either as research-grade material in 293 and CHO cells or as two independent lots of clinical material under good manufacturing practice (GMP) conditions. Almost all potential N-linked glycosylation sites were at least partially occupied in all proteins. The occupancy rates were largely consistent among proteins produced under different conditions, although a few sites showed substantial variability even between the two GMP lots. Our data confirmed previous studies in the field, showing an abundance of oligomannose on Env protein, with 40 to 50% of glycans being Man5 to Man9 on all four proteins under all production conditions. Overall, the differences in occupancy and glycan forms among different Env subtypes produced under different conditions were less dramatic than anticipated, and antigenicity analysis with a panel of six monoclonal antibodies, including antibodies that recognize glycan forms, showed that all four gp120s maintained their antibody-binding profiles. Such findings have major implications for the final production of a clinical HIV vaccine with Env glycoprotein components. IMPORTANCE HIV-1 Env protein is a major target for the development of an HIV-1 vaccine. Env is covered with a large number of sugar-based glycan forms; about 50% of the Env molecular weight is composed of glycans. Glycan analysis of recombinant Env is important for understanding its roles in viral pathogenesis and immune responses. The current report presents the first extensive comparison of glycosylation patterns of recombinant gp120 proteins from four major clades of HIV-1 produced in two different cell lines, grown either under laboratory conditions or at 50-liter GMP scale in different lots. Information learned in this study is valuable for the further design and production of HIV-1 Env proteins as the critical components of HIV-1 vaccine formulations.


2018 ◽  
Vol 14 (4) ◽  
pp. e1006093 ◽  
Author(s):  
Wen-Han Yu ◽  
Peng Zhao ◽  
Monia Draghi ◽  
Claudia Arevalo ◽  
Christina B. Karsten ◽  
...  

2018 ◽  
Vol 114 (3) ◽  
pp. 537a
Author(s):  
Pablo Carravilla ◽  
Edurne Rujas ◽  
Itziar R Oar-Arteta ◽  
Sara Insausti ◽  
Eneko Largo ◽  
...  

2017 ◽  
Vol 15 (03) ◽  
pp. 1750010 ◽  
Author(s):  
Ze Liu ◽  
Hongqiang Lv ◽  
Jiuqiang Han ◽  
Ruiling Liu

Transmembrane region (TR) is a conserved region of transmembrane (TM) subunit in envelope (env) glycoprotein of retrovirus. Evidences have shown that TR is responsible for anchoring the env glycoprotein on the lipid bilayer and substitution of the TR for a covalently linked lipid anchor abrogates fusion. However, universal software could not achieve sufficient accuracy as TM in env also has several motifs such as signal peptide, fusion peptide and immunosuppressive domain composed largely of hydrophobic residues. In this paper, a support vector machine-based (SVM) model is proposed to identify TRs in retroviruses. Firstly, physicochemical and evolutionary information properties were extracted as original features. And then, the feature importance was analyzed by minimum Redundancy Maximum Relevance (mRMR) feature selection criterion. Our model achieved an Sn of 0.955, Sp of 0.998, ACC of 0.995, MCC of 0.954 using 10-fold cross-validation on the training dataset. These results suggest that the proposed model can be used to predict TRs in non-annotation retroviruses and 11917, 3344, 2, 289 and 6 new putative TRs were found in HERV, HIV, HTLV, SIV, MLV, respectively.


Sign in / Sign up

Export Citation Format

Share Document