tnf superfamily
Recently Published Documents


TOTAL DOCUMENTS

220
(FIVE YEARS 51)

H-INDEX

43
(FIVE YEARS 3)

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 181
Author(s):  
Fengzhi Suo ◽  
Xinyu Zhou ◽  
Rita Setroikromo ◽  
Wim J. Quax

The tumor necrosis factor (TNF) ligand family has nine ligands that show promiscuity in binding multiple receptors. As different receptors transduce into diverse pathways, the study on the functional role of natural ligands is very complex. In this review, we discuss the TNF ligands engineering for receptor specificity and summarize the performance of the ligand variants in vivo and in vitro. Those variants have an increased binding affinity to specific receptors to enhance the cell signal conduction and have reduced side effects due to a lowered binding to untargeted receptors. Refining receptor specificity is a promising research strategy for improving the application of multi-receptor ligands. Further, the settled variants also provide experimental guidance for engineering receptor specificity on other proteins with multiple receptors.


2021 ◽  
Author(s):  
Giulia Di Benedetto ◽  
Chiara Burgaletto ◽  
Maria Francesca Serapide ◽  
Antonio Munafò ◽  
Carlo Maria Bellanca ◽  
...  

Abstract TRAIL, a member of TNF superfamily, is a potent inducer of neuronal death. Neurotoxic effects of TRAIL appear mediated by its death receptor TRAIL-R2/DR5. To assess the role of TRAIL/TRAIL-R2 pathway in AD-related neurodegeneration, we studied the impact of the treatment with amyloid-β (Aβ) upon cell viability and inflammation in TRAIL-R-deficient mice (TRAIL-R-/-). Here, we demonstrate that the lack of TRAIL-R2 protects from death cultured TRAIL-R-/- mouse embryonic hippocampal cells undergone treatment with either Aβ1-42 or TRAIL. Consistently, stereotaxic injection of Aβ1-42 resulted in blunted caspase activation, as well as in reduction of JNK phosphorylation and increased AKT phosphorylation in TRAIL-R-/- mice. Moreover, the lack of TRAIL-R2 was associated with blunted constitutive p53 expression in mice undergone Aβ1-42 treatment, as well as in decrease of phosphorylated forms of tau and GSK3β protein. Likewise, TRAIL-R2 appears essential to both TRAIL-Aβ mediated neurotoxicity and inflammation. Indeed, hippocampi of TRAIL-R-/- mice, challenged with Aβ1-42, showed a scanty expression of microglial (Iba-1) and astrocytic (GFAP) markers along with attenuated levels of IL-1β, TNF-a, iNOS and COX2. In conclusion, the bulk of these results demonstrate that the constitutive lack of TRAIL-R2 is associated with a substantial reduction of noxious effects of Aβ1-42, providing further evidence on the prominent role played by TRAIL in course of Aβ-related neurodegeneration and confirming that the TRAIL system represents a potential target for innovative AD therapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rui Chen ◽  
Xinxing Wang ◽  
Ziyu Dai ◽  
Zeyu Wang ◽  
Wantao Wu ◽  
...  

Existing therapeutic strategies for gliomas are restricted; hence, exploration for novel diagnostic indicator and treatment is essential. Here, we performed bioinformatic analyses for TNFSF13 (also known as APRIL), a proliferation-inducing ligand of the tumor necrosis factor (TNF) superfamily, aiming to assess its potential for predicting glioma patient’s prognosis and targeted therapy. TNFSF13 expression was upregulated in the increase of tumor grades based on Xiangya cohort. In high TNFSF13 gliomas, somatic mutation was proved to correlate with amplification of EGFR and deletion of CDKN2A; while mutation of IDH1 was more frequently observed in low TNFSF13 group. We also confirmed the positive correlation between TNFSF13 and infiltrating immune and stromal cells in glioma microenvironment. Further, TNFSF13 was found to be involved in immunosuppression via diverse immunoregulation pathways and was associated with other immune checkpoints and inflammation. Single-cell sequencing revealed an abundant expression of TNFSF13 in neoplastic cells and M2 macrophages, which TNFSF13 might potentially regulate the cell communication via IL-8, C3, and CD44. Lastly, TNFSF13 mediated the activities of transcription factors including FOXO3, MEIS2, and IRF8. Our analyses demonstrated the relevance between TNFSF13 and glioma progress and indicated the potential of TNFSF13 as a novel diagnostic onco-inflammatory biomarker and immunotherapy target of gliomas.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258212
Author(s):  
Dawn K. Coletta ◽  
Leslea J. Hlusko ◽  
G. Richard Scott ◽  
Luis A. Garcia ◽  
Celine M. Vachon ◽  
...  

The ectodysplasin receptor (EDAR) is a tumor necrosis factor receptor (TNF) superfamily member. A substitution in an exon of EDAR at position 370 (EDARV370A) creates a gain of function mutant present at high frequencies in Asian and Indigenous American populations but absent in others. Its frequency is intermediate in populations of Mexican ancestry. EDAR regulates the development of ectodermal tissues, including mammary ducts. Obesity and type 2 diabetes mellitus are prevalent in people with Indigenous and Latino ancestry. Latino patients also have altered prevalence and presentation of breast cancer. It is unknown whether EDARV370A might connect these phenomena. The goals of this study were to determine 1) whether EDARV370A is associated with metabolic phenotypes and 2) if there is altered breast anatomy in women carrying EDARV370A. Participants were from two Latino cohorts, the Arizona Insulin Resistance (AIR) registry and Sangre por Salud (SPS) biobank. The frequency of EDARV370A was 47% in the Latino cohorts. In the AIR registry, carriers of EDARV370A (GG homozygous) had significantly (p < 0.05) higher plasma triglycerides, VLDL, ALT, 2-hour post-challenge glucose, and a higher prevalence of prediabetes/diabetes. In a subset of the AIR registry, serum levels of ectodysplasin A2 (EDA-A2) also were associated with HbA1c and prediabetes (p < 0.05). For the SPS biobank, participants that were carriers of EDARV370A had lower breast density and higher HbA1c (both p < 0.05). The significant associations with measures of glycemia remained when the cohorts were combined. We conclude that EDARV370A is associated with characteristics of the metabolic syndrome and breast density in Latinos.


Author(s):  
Wiktoria Ratajczak ◽  
Sarah D Atkinson ◽  
Catriona Kelly

AbstractTWEAK (tumor necrosis factor-like weak inducer of apoptosis) is a member of the TNF superfamily that controls a multitude of cellular events including proliferation, migration, differentiation, apoptosis, angiogenesis, and inflammation. TWEAK control of these events is via an expanding list of intracellular signalling pathways which include NF-κB, ERK/MAPK, Notch, EGFR and AP-1. Two receptors have been identified for TWEAK – Fn14, which targets the membrane bound form of TWEAK, and CD163, which scavenges the soluble form of TWEAK. TWEAK appears to elicit specific events based on the receptor to which it binds, tissue type in which it is expressed, specific extrinsic conditions, and the presence of other cytokines. TWEAK signalling is protective in healthy tissues, but in chronic inflammatory states become detrimental to the tissue. Consistent data show a role for the TWEAK/FN14/CD163 axis in metabolic disease, chronic autoimmune diseases, and acute ischaemic stroke. Low circulating concentrations of soluble TWEAK are predictive of poor cardiovascular outcomes in those with and without diabetes. This review details the current understanding of the TWEAK/Fn14/CD163 axis as one of the chief regulators of immune signalling and its cell-specific role in metabolic disease development and progression.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kai Li ◽  
Lei Ma ◽  
Ye Sun ◽  
Xiang Li ◽  
Hong Ren ◽  
...  

AbstractImmune checkpoint blockade, an immunotherapy, has been applied in multiple systemic malignancies and has improved overall survival to a relatively great extent; whether it can be applied in breast cancer remains unknown. We endeavored to explore possible factors that may influence immunotherapy outcomes in breast cancer using several public databases. The possible treatment target TNF superfamily member 4 (TNFSF4) was selected from many candidates based on its abnormal expression profile, survival-associated status, and ability to predict immune system reactions. For the first time, we identified the oncogenic features of TNFSF4 in breast carcinoma. TNFSF4 was revealed to be closely related to treatment that induced antitumor immunity and to interact with multiple immune effector molecules and T cell signatures, which was independent of endocrine status and has not been reported previously. Moreover, the potential immunotherapeutic approach of TNFSF4 blockade showed underlying effects on stem cell expansion, which more strongly and specifically demonstrated the potential effects of applying TNFSF4 blockade-based immunotherapies in breast carcinomas. We identified potential targets that may contribute to breast cancer therapies through clinical analysis and real-world review and provided one potential but crucial tool for treating breast carcinoma that showed effects across subtypes and long-term effectiveness.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1260
Author(s):  
Daria Shunkina (Skuratovskaia) ◽  
Alexandra Komar ◽  
Maria Vulf ◽  
Hung Vu Quang ◽  
Egor Shunkin ◽  
...  

Interactions between receptors and ligands of the tumor necrosis factor superfamily (TNFSF) provide costimulatory signals that control the survival, proliferation, differentiation, and effector function of immune cells. All components of the TNF superfamily are associated with NF-kB functions that are not limited to cell death and may promote survival in the face of adipose tissue inflammation in obesity. Inflammation dysfunction of mitochondria is a key factor associated with insulin resistance in obesity. The aim of the study was to analyze the relationship of soluble forms of receptors and ligands of the TNF superfamily in blood plasma with mitochondrial dynamics in adipose tissue (greater omentum (GO) and subcutaneous adipose tissue (Sat)) of obese patients with and without type 2 diabetes mellitus (T2DM). Increased plasma sTNF-R1, sTNF-R2, sTNFRSF8 receptors, and ligands TNFSF12, TNFSF13, TNFSF13B are characteristic of obese patients without T2DM. The TNF-a levels in blood plasma were associated with a decrease in MFN2 gene expression in GO and IL-10 in blood plasma. The TNFSF12 levels contributed to a decrease in glucose levels, a decrease in BMI, and an increase in IL-10 levels by influencing the MFN2 gene expression in GO, which supports mitochondrial fusion.


Author(s):  
Daria Shunkina (Skuratovskaia) ◽  
Alexandra Komar ◽  
Maria Vulf ◽  
Hung Vu Quang ◽  
Egor Shunkin ◽  
...  

Interactions between receptors and ligands of the tumor necrosis factor superfamily (TNFSF) provide costimulatory signals that control the survival, proliferation, differentiation, and effector function of immune cells. All components of the TNF superfamily are associated with NF-kB functions that are not limited to cell death and may promote survival in the face of adipose tissue inflammation in obesity. Inflammation and pro-inflammatory dysfunction of mitochondria are key factors associated with insulin resistance in obesity. The aim of the study was to analyze the relationship of soluble forms of receptors and ligands of the TNF superfam-ily in blood plasma with mitochondrial dynamics in adipose tissue (greater omentum (GO) and subcutaneous adipose tissue (Sat)) of obese patients with and without type 2 diabetes mellitus (T2DM). Increased plasma sTNF-R1, sTNF-R2, sTNFRSF8 receptors and ligands TNFSF12, TNFSF13, TNFSF13B are characteristic of obese patients without T2DM. Increases in TNFSF12, TNFSF13B, and sTNF-R1 levels are associated with decreased glucose concentration and decreased BMI in obese patients. The gene expression levels responsible for regulating mitochondrial dynamics were increased in obese patients without T2DM and were unbalanced in patients with obesity and T2DM.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1072
Author(s):  
Ahmed Aido ◽  
Olena Zaitseva ◽  
Harald Wajant ◽  
Matej Buzgo ◽  
Aiva Simaite

Conventional bivalent IgG antibodies targeting a subgroup of receptors of the TNF superfamily (TNFSF) including fibroblast growth factor-inducible 14 (anti-Fn14) typically display no or only very limited agonistic activity on their own and can only trigger receptor signaling by crosslinking or when bound to Fcγ receptors (FcγR). Both result in proximity of multiple antibody-bound TNFRSF receptor (TNFR) molecules, which enables engagement of TNFR-associated signaling pathways. Here, we have linked anti-Fn14 antibodies to gold nanoparticles to mimic the “activating” effect of plasma membrane-presented FcγR-anchored anti-Fn14 antibodies. We functionalized gold nanoparticles with poly-ethylene glycol (PEG) linkers and then coupled antibodies to the PEG surface of the nanoparticles. We found that Fn14 binding of the anti-Fn14 antibodies PDL192 and 5B6 is preserved upon attachment to the nanoparticles. More importantly, the gold nanoparticle-presented anti-Fn14 antibody molecules displayed strong agonistic activity. Our results suggest that conjugation of monoclonal anti-TNFR antibodies to gold nanoparticles can be exploited to uncover their latent agonism, e.g., for immunotherapeutic applications.


2021 ◽  
Author(s):  
Anusha Jayaraman ◽  
Thein Htike ◽  
Rachel James ◽  
Carmen Picon ◽  
Richard Reynolds

The pathogenetic mechanisms underlying neuronal death and dysfunction in Alzheimers disease (AD) remain unclear. However, chronic neuroinflammation has been implicated in stimulating or exacerbating neuronal damage. The tumor necrosis factor (TNF) superfamily of cytokines are involved in many systemic chronic inflammatory and degenerative conditions and are amongst the key mediators of neuroinflammation. TNF binds to the TNFR1 and TNFR2 receptors to activate diverse cellular responses that can be either neuroprotective or neurodegenerative. In particular, TNF can induce programmed necrosis or necroptosis in an inflammatory environment. Although activation of necroptosis has recently been demonstrated in the AD brain, its significance in AD neuron loss and the role of TNF signaling is unclear. We demonstrate an increase in expression of multiple proteins in the TNF/TNF receptor-1-mediated necroptosis pathway in the AD post-mortem brain, as indicated by the phosphorylation of RIPK3 and MLKL, predominantly observed in the CA1 pyramidal neurons. The density of phosphoRIPK3+ and phosphoMLKL+ neurons correlated inversely with total neuron density and showed significant sexual dimorphism within the AD cohort. In addition, apoptotic signaling was not significantly activated in the AD brain compared to the control brain. Exposure of human iPSC-derived glutamatergic neurons to TNF increased necroptotic cell death when apoptosis was inhibited, which was significantly reversed by small molecule inhibitors of RIPK1, RIPK3, and MLKL. In the post-mortem AD brain and in human iPSC neurons to TNF, we show evidence of altered expression of proteins of the ESCRT III complex, which has been recently suggested as an antagonist of necroptosis and a possible mechanism by which cells can survive after necroptosis has been triggered. Taken together, our results suggest that neuronal loss in AD is due to TNF-mediated necroptosis rather than apoptosis, which is amenable to therapeutic intervention at several points in the signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document