scholarly journals Hepatitis B virus HBx protein localized to the nucleus restores HBx-deficient virus replication in HepG2 cells and in vivo in hydrodynamically-injected mice

Virology ◽  
2009 ◽  
Vol 390 (1) ◽  
pp. 122-129 ◽  
Author(s):  
Victor V. Keasler ◽  
Amanda J. Hodgson ◽  
Charles R. Madden ◽  
Betty L. Slagle
2006 ◽  
Vol 81 (6) ◽  
pp. 2656-2662 ◽  
Author(s):  
Victor V. Keasler ◽  
Amanda J. Hodgson ◽  
Charles R. Madden ◽  
Betty L. Slagle

ABSTRACT The 3.2-kb hepatitis B virus (HBV) genome encodes a single regulatory protein termed HBx. While multiple functions have been identified for HBx in cell culture, its role in virus replication remains undefined. In the present study, we combined an HBV plasmid-based replication assay with the hydrodynamic tail vein injection model to investigate the function(s) of HBx in vivo. Using a greater-than-unit-length HBV plasmid DNA construct (payw1.2) and a similar construct with a stop codon at position 7 of the HBx open reading frame (payw1.2*7), we showed that HBV replication in transfected HepG2 cells was reduced 65% in the absence of HBx. These plasmids were next introduced into the livers of outbred ICR mice via hydrodynamic tail vein injection. At the peak of virus replication, at 4 days postinjection, intrahepatic markers of HBV replication were reduced 72% to 83% in mice injected with HBx-deficient payw1.2*7 compared to those measured in mice receiving wild-type payw1.2. A second plasmid encoding HBx was able to restore virus replication from payw1.2*7 to wild-type levels. Finally, viremia was monitored over the course of acute virus replication, and at 4 days postinjection, it was reduced by nearly 2 logs in the absence of HBx. These studies establish that the role for HBx in virus replication previously shown in transfected HepG2 cells is also apparent in the mouse liver within the context of acute hepatitis. Importantly, the function of HBx can now be studied in an in vivo setting that more closely approximates the cellular environment for HBV replication.


2015 ◽  
Vol 41 (08) ◽  
Author(s):  
C Klein ◽  
CT Bock ◽  
H Wedemeyer ◽  
T Wüstefeld ◽  
S Locarnini ◽  
...  

2013 ◽  
Vol 21 (10) ◽  
pp. 1889-1897 ◽  
Author(s):  
Kristie Bloom ◽  
Abdullah Ely ◽  
Claudio Mussolino ◽  
Toni Cathomen ◽  
Patrick Arbuthnot

2013 ◽  
Vol 19 (4) ◽  
pp. 363-373 ◽  
Author(s):  
Carol Crowther ◽  
Mohube B Mowa ◽  
Abdullah Ely ◽  
Patrick B Arbuthnot

2012 ◽  
Vol 56 ◽  
pp. S217
Author(s):  
X. Wang ◽  
D. Jiang ◽  
H.Y. Zhang ◽  
F. Liu ◽  
H.H. Zhang ◽  
...  

1990 ◽  
Vol 32 (4) ◽  
pp. 212-218 ◽  
Author(s):  
Jianzhang Niu ◽  
Yanyan Wang ◽  
Ming Qiao ◽  
Eric Gowans ◽  
Patrick Edwards ◽  
...  

2017 ◽  
Vol 43 (6) ◽  
pp. 2379-2390 ◽  
Author(s):  
Zongqiang Hu ◽  
Ding Luo ◽  
Dongdong Wang ◽  
Linjie Ma ◽  
Yingpeng Zhao ◽  
...  

Background/Aims: We performed this study to determine the role of IL-17 in the immune microenvironment of hepatitis B virus- (HBV-) related hepatocellular carcinoma (HCC). Methods: HepG2 cells were treated with IL-17, STAT3 inhibitor S31-201 or IL-6 neutralizing monoclonal antibody (IL-6 mAb). Cell proliferation and migration were compared using the Cell Counting kit-8 (CCK-8) and Transwell assays, respectively. Real-time quantitative PCR (RT-qPCR), Western Blot, ELISA, immunofluorescence and histological staining were used for determining the expression levels of IL-17, IL-6, MCP-1, CCL5, VEGF, STAT3 and p-STAT3. HCC xenograft models were constructed in wild type and IL-17 knockout mice to clarify the effects of IL-17 on HCC in vivo. Results: Exogenous IL-17 enhanced the proliferation and migration of HepG2 cells, and it activated the phosphorylation of STAT3. RT-qPCR and ELISA showed that IL-17 promoted the expression of IL-6. The CCK-8 and Transwell assays showed that S31-201 or IL-6 mAb remarkably reversed the promotion effects of proliferation and migration by exogenous IL-17 in HepG2 cells. Additionally, IL-6 could promote the phosphorylation of STAT3, while IL-6 mAb acted as an inhibitor, and exogenous IL-17 could neutralize the inhibitory effects of IL-6 mAb. In vivo, compared to the wild type mice, the tumor volume, weight, density and size were decreased in IL-17 knockout mice. Additionally, the expression levels of p-STAT3, IL-6, MCP-1, CCL5 and VEGF decreased in IL-17 knockout mice. Conclusions: IL-17 can enhance the proliferation of HepG2 cells in vitro and in vivo via activating the IL-6/STAT3 pathway. Therefore, the IL-17/IL-6/STAT3 signaling pathway is a potential therapeutic target for HBV-related HCC.


Sign in / Sign up

Export Citation Format

Share Document