scholarly journals Herpes simplex virus type 2 glycoprotein E is required for efficient virus spread from epithelial cells to neurons and for targeting viral proteins from the neuron cell body into axons

Virology ◽  
2010 ◽  
Vol 405 (2) ◽  
pp. 269-279 ◽  
Author(s):  
Fushan Wang ◽  
Elizabeth E. Zumbrun ◽  
Jialing Huang ◽  
Huaxin Si ◽  
Lena Makaroun ◽  
...  
2011 ◽  
Vol 92 (9) ◽  
pp. 1981-1993 ◽  
Author(s):  
Xiao-Dan Yao ◽  
Kenneth Lee Rosenthal

Viruses that establish persistent infections have evolved numerous strategies to evade host innate antiviral responses. We functionally assessed the role of herpes simplex virus type 2 (HSV-2) virion host shutoff (vhs) protein on innate immune sensing pathways in human vaginal epithelial cells (VK2 ECs). Infection of cells with wild-type (WT) HSV-2 significantly decreased expression of innate immune sensors of viral infection, Toll-like receptor (TLR)2, TLR3, retinoic acid inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (Mda-5), relative to cells infected with a mutant that lacks vhs (vhsB) or mock-infected cells. Transfection with HSV-2 vhs similarly decreased expression of TLR2, TLR3, RIG-I and Mda-5, which was also confirmed in human embryonic kidney (HEK) 293 cells. vhsB infection of VK2 cells caused robust increases in the active form of interferon regulatory factor (IRF)3 and its translocation to the nucleus compared with the WT. Additionally, IRF3 activation by Sendai virus and polyinosinic : polycytidylic acid-induced stimulation of beta interferon (IFN-β) was significantly inhibited in vhs-transfected cells. Overall, our findings provide the first evidence that HSV-2 vhs plays roles in selectively inhibiting TLR3 and RIG-I/Mda-5, as well as TLR2-mediated antiviral pathways for sensing dsRNA and effectively suppresses IFN-β antiviral responses in human vaginal ECs.


2000 ◽  
Vol 74 (15) ◽  
pp. 6712-6719 ◽  
Author(s):  
Charles E. Saldanha ◽  
John Lubinski ◽  
Claudia Martin ◽  
Thandavarayan Nagashunmugam ◽  
Liyang Wang ◽  
...  

ABSTRACT Herpes simplex virus type 1 (HSV-1) glycoprotein E (gE) functions as an immunoglobulin G (IgG) Fc binding protein and is involved in virus spread. Previously we studied a gE mutant virus that was impaired for IgG Fc binding but intact for spread and another that was normal for both activities. To further evaluate the role of gE in spread, two additional mutant viruses were constructed by introducing linker insertion mutations either outside the IgG Fc binding domain at gE position 210 or within the IgG Fc binding domain at position 380. Both mutant viruses were impaired for spread in epidermal cells in vitro; however, the 380 mutant virus was significantly more impaired and was as defective as gE null virus. gE mutant viruses were inoculated into the murine flank to measure epidermal disease at the inoculation site, travel of virus to dorsal root ganglia, and spread of virus from ganglia back to skin to produce zosteriform lesions. Disease at the inoculation and zosteriform sites was reduced for both mutant viruses, but more so for the 380 mutant virus. Moreover, the 380 mutant virus was highly impaired in its ability to reach the ganglia, as demonstrated by virus culture and real-time quantitative PCR. The results indicate that the domain surrounding amino acid 380 is important for both spread and IgG Fc binding and suggest that this domain is a potential target for antiviral therapy or vaccines.


Sign in / Sign up

Export Citation Format

Share Document