scholarly journals Helmholtz decomposition-based SPH

2021 ◽  
Vol 3 (2) ◽  
pp. 118-128
Author(s):  
Zhongyao Yang ◽  
Maolin Wu ◽  
Shiguang liu
2015 ◽  
Vol 37 (1) ◽  
pp. 015201 ◽  
Author(s):  
D Petrascheck

2021 ◽  
Vol 411 ◽  
pp. 126501
Author(s):  
Marcelo Bernardes Vieira ◽  
Gilson Antonio Giraldi ◽  
Allan Carlos Amaral Ribeiro ◽  
Marcelo Caniato Renhe ◽  
Claudio Esperança

2016 ◽  
Vol 20 (5) ◽  
pp. 1381-1404
Author(s):  
Zu-Hui Ma ◽  
Weng Cho Chew ◽  
Li Jun Jiang

AbstractEven though there are various fast methods and preconditioning techniques available for the simulation of Poisson problems, little work has been done for solving Poisson's equation by using the Helmholtz decomposition scheme. To bridge this issue, we propose a novel efficient algorithm to solve Poisson's equation in irregular two dimensional domains for electrostatics through a quasi-Helmholtz decomposition technique—the loop-tree basis decomposition. It can handle Dirichlet, Neumann or mixed boundary problems in which the filling media can be homogeneous or inhomogeneous. A novel point of this method is to first find the electric flux efficiently by applying the loop-tree basis functions. Subsequently, the potential is obtained by finding the inverse of the gradient operator. Furthermore, treatments for both Dirichlet and Neumann boundary conditions are addressed. Finally, the validation and efficiency are illustrated by several numerical examples. Through these simulations, it is observed that the computational complexity of our proposed method almost scales as , where N is the triangle patch number of meshes. Consequently, this new algorithm is a feasible fast Poisson solver.


2017 ◽  
Vol 17 (4) ◽  
pp. 601-616 ◽  
Author(s):  
Zheng Li ◽  
Shuo Zhang

AbstractThis paper studies the mixed element method for the boundary value problem of the biharmonic equation {\Delta^{2}u=f} in two dimensions. We start from a {u\sim\nabla u\sim\nabla^{2}u\sim\operatorname{div}\nabla^{2}u} formulation that is discussed in [4] and construct its stability on {H^{1}_{0}(\Omega)\times\tilde{H}^{1}_{0}(\Omega)\times\bar{L}_{\mathrm{sym}}^% {2}(\Omega)\times H^{-1}(\operatorname{div},\Omega)}. Then we utilise the Helmholtz decomposition of {H^{-1}(\operatorname{div},\Omega)} and construct a new formulation stable on first-order and zero-order Sobolev spaces. Finite element discretisations are then given with respect to the new formulation, and both theoretical analysis and numerical verification are given.


2019 ◽  
Vol 49 (9) ◽  
pp. 2237-2254 ◽  
Author(s):  
Sebastian Essink ◽  
Verena Hormann ◽  
Luca R. Centurioni ◽  
Amala Mahadevan

AbstractA cluster of 45 drifters deployed in the Bay of Bengal is tracked for a period of four months. Pair dispersion statistics, from observed drifter trajectories and simulated trajectories based on surface geostrophic velocity, are analyzed as a function of drifter separation and time. Pair dispersion suggests nonlocal dynamics at submesoscales of 1–20 km, likely controlled by the energetic mesoscale eddies present during the observations. Second-order velocity structure functions and their Helmholtz decomposition, however, suggest local dispersion and divergent horizontal flow at scales below 20 km. This inconsistency cannot be explained by inertial oscillations alone, as has been reported in recent studies, and is likely related to other nondispersive processes that impact structure functions but do not enter pair dispersion statistics. At scales comparable to the deformation radius LD, which is approximately 60 km, we find dynamics in agreement with Richardson’s law and observe local dispersion in both pair dispersion statistics and second-order velocity structure functions.


Author(s):  
M. Cabana ◽  
V. Fortuné ◽  
P. Jordan ◽  
F. Golanski ◽  
Eric Lamballais ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document