order function
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 24)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 4 (4) ◽  
pp. 1-9
Author(s):  
Praveen Prakash ◽  
Chandana Shivaiah ◽  
Abishek Umashankar ◽  
Prashanth Prabhu

The human circadian rhythmicity is an internal biological clock mechanism that enables them to effectively perform tasks during a particular time of the day, due to which they exhibit diurnal effects. The morningness-eveningness questionnaire classifies individuals as definitely morning, moderately morning, intermediate, moderately evening, and definitely evening type individuals based on their active performance during different times of the day. Literature show variations in visual, memory, audition, and other cognitive tasks throughout the day in every individual. The current study aimed to document the diurnal effects on auditory working memory, a phenomenon crucial for learning and academic outcomes and holds its role in various clinical and research fields. Thirty-two participants were enrolled (21 females and 11 males) and were classified based on the morningness-eveningness questionnaire. The Auditory Working Memory tests were carried out during the morning and evening for all the participants. Based on a parametric paired t-test, results reveal no significant differences between morning time and evening time across moderately morning, intermediate, and moderately evening groups implying that working memory is a higher-order function that shows no or negligible diurnal effects, unlike other lower-order functions like temporal processing of auditory signals.


2021 ◽  
Author(s):  
Ahmad Aidil Arafat Dzulkarnain ◽  
Nur Hafizah Sulaiman ◽  
Fatin Amira Shahrudin ◽  
Shahrul Na’im Sidek ◽  
Hazlina Md. Yusof ◽  
...  

Earlier studies disputed the influence of higher-order function such as attention or cognitive inhibition on the auditory brainstem response (ABR) result. In short, the ABR result was considered similar with or without the subject paying attention. However, in the last few years, there has been growing evidence that the higher-order function may influence the ABR findings provided the sensory gating system of the brain is triggered by any cognitive interference activities. This chapter will explain the concept of auditory sensory gating, a method to measure auditory sensory gating, and at the end of the chapter, preliminary findings concerning the ABR with cognitive interference among ten normally developing children are presented. This chapter will also share a case study that compared auditory sensory gating capacity in normal and children with mild autism spectrum disorder (ASD).


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Xiaoran Lin ◽  
Yachao Wang ◽  
Guohao Wu ◽  
Jing Hao

A fractional integral operator can preserve an image edge and texture details as a denoising filter. Recently, a newly defined fractional-order integral, Atangana–Baleanu derivatives (ABC), has been used successfully in image denoising. However, determining the appropriate order requires numerous experiments, and different image regions using the same order may cause too much smoothing or insufficient denoising. Thus, we propose an adaptive fractional integral operator based on the Atangana–Baleanu derivatives. Edge intensity, global entropy, local entropy, and local variance weights are used to construct an adaptive order function that can adapt to changes in different regions of an image. Then, we use the adaptive order function to improve the masks based on the Grumwald–Letnikov scheme (GL_ABC) and Toufik–Atangana scheme (TA_ABC), namely, Ada_GL_ABC and Ada_TA_ABC, respectively. Finally, multiple evaluation indicators are used to assess the proposed masks. The experimental results demonstrate that the proposed adaptive operator can better preserve texture details when denoising than other similar operators. Furthermore, the image processed by the Ada_TA_ABC operator has less noise and more detail, which means the proposed adaptive function has universality.


2021 ◽  
Author(s):  
John G. Hodge ◽  
Andrew N. Doust

AbstractPlant morphologies exhibit a wide array of outcomes that have evolved as a consequence adapting to a wide array of ecological pressures. These disparate morphologies have provided a rich field for comparative morphologists, developmental biologists, and geneticists to explore. Ultimately the array of variation observed in nature across different plant species is built on the same functional unit, the phytomer, which is composed of a leaf, a node, and an internode. Sequentially produced phytomers exhibit heteroblasty, that is, a gradual or abrupt change in shape, either due to size changes or changes due to reproductive phase. The progression of shape change over time is often indirectly measured by sampling several stages of plant growth and comparing allometric relationships between shape variables. However, a more precise method is to use an absolute time scale and measure shape change of sequential organs directly. In this study we use such time-dependent measurements to build a general model of organ growth for several Setaria genotypes, for both leaves and internodes. We term this the second-order function-value trait (2FVT) model, because it generalizes individual function-value trait models generated for each organ. This model reduces phenotypic noise by averaging the general trend of ontogeny and provides a quantitative tool to describe where and when phenotypic shifts occur during the ontogenies of different genotypes. The ability to recognize how ontogenetic variation is distributed within equivalent positions of the body plan at the interspecific level can be used as a tool to explore various questions related to growth and form in plants both for comparative morphology and developmental genetics.


2021 ◽  
Author(s):  
Dejian Li ◽  
Xiaolin Liu ◽  
Yiming Shao ◽  
Chao Han

Abstract In order to investigate compressive mechanical behaviors of rock materials after different heating-cooling treatments, in this paper, a series of uniaxial compressive experiments are carried out on red sandstone samples after various heating temperature (from 25℃ to 1000℃) and water cooling treatments (10℃) to obtain evolution laws of mechanical property. The evolution laws of peak strength, elastic modulus, primary wave velocity and micro-structure are analyzed in details. And for better reflecting compressive stress-strain behaviors of red sandstone after heating-cooling treatments, based on Caputo variable-order fractional calculus, considering strain correlation and constant strain loading rate, we propose a novel variable-order fractional constitutive model to describe stress-strain behaviors of red sandstone samples after heating-cooling treatments. The validation of proposed model is well verified and a comparative study between proposed variable-order fractional constitutive model and constant-order fractional constitutive model is performed to highlight the advantage of proposed model. The evolutions of mechanical characteristics are revealed by presented varying-order function related to strain and the influence of fitting parameters on stress-strain behaviors are also discussed for deeply comprehending compressive mechanical mechanism of red sandstone after heating-cooling treatments.


Author(s):  
Qiming Liu ◽  
Nichen Tong ◽  
Xu Han

Commonly, variance-based global sensitivity analysis methods are popular and applicable to quantify the impact of a set of input variables on output response. However, for many engineering practical problems, the output response is not single but multiple, which makes some traditional sensitivity analysis methods difficult or unsuitable. Therefore, a novel global sensitivity analysis method is presented to evaluate the importance of multi-input variables to multi-output responses. First, assume that a multi-input multi-output system (MIMOS) includes [Formula: see text] variables and [Formula: see text] responses. A set of summatory functions [Formula: see text] and [Formula: see text] are constructed by the addition and subtraction of any two response functions. Naturally, each response function is represented using a set of summatory function. Subsequently, the summatory functions [Formula: see text] and [Formula: see text] are further decomposed based on the high dimensional model representation (HDMR), respectively. Due to the orthogonality of all the decomposed function sub-terms, the variance and covariance of each response function can be represented using the partial variances of all the decomposed function sub-terms on the corresponding summatory functions, respectively. The total fluctuation of MIMOS is calculated by the sum of the variances and covariances on all the response functions. Further, the fluctuation is represented as the sum of the total partial variances for all the [Formula: see text]-order function sub-terms, and the total partial variance is the sum of [Formula: see text] partial variances for the corresponding [Formula: see text]-order function sub-terms. Then, the function sensitivity index (FSI) [Formula: see text] for s-order function sub-terms is defined by the ratio of the total partial variance and total fluctuation, which includes first-order, second-order, and high-order FSI. The variable sensitivity index [Formula: see text] of variable [Formula: see text] is calculated by the sum of all the FSIs including the contribution of variable [Formula: see text]. Finally, numerical example and engineering application are employed to demonstrate the accuracy and practicality of the presented global sensitivity analysis method for MIMOS.


2021 ◽  
Vol 11 (3) ◽  
pp. 284
Author(s):  
Grazia Fernanda Spitoni ◽  
Giorgio Pireddu ◽  
Valerio Zanellati ◽  
Beatrice Dionisi ◽  
Gaspare Galati ◽  
...  

Several studies have found in the sense of touch a good sensory modality by which to study body representation. Here, we address the “metric component of body representation”, a specific function developed to process the discrimination of tactile distances on the body. The literature suggests the involvement of the right angular gyrus (rAG) in processing the tactile metricity on the body. The question of this study is the following: is the rAG also responsible for the visual metric component of body representation? We used tDCS (anodal and sham) in 20 subjects who were administered an on-body distance discrimination task with both tactile and visual stimuli. They were also asked to perform the same task in a near-body condition. The results allow us to confirm the role of rAG in the estimation of tactile distances. Further, we also showed that rAG might be involved in the discrimination of distances on the body not only in tactile but also in visual modality. Finally, based on the significant effects of anodal stimulation even in a near-body visual discrimination task, we proposed a higher-order function of the AG in terms of a supramodal comparator of quantities.


Sign in / Sign up

Export Citation Format

Share Document