geostrophic velocity
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 13)

H-INDEX

16
(FIVE YEARS 2)

Abstract A four-dimensional survey by a fleet of 7 underwater gliders was used to identify pathways of subduction at the Almeria-Oran front in the western Mediterranean Sea. The combined glider fleet covered nearly 9000 km over ground while doing over 2500 dives to as deep as 700 m. The gliders had sensors to measure temperature, salinity, velocity, chlorophyll fluorescence and acoustic backscatter. Data from the gliders were analyzed through objective maps that were functions of across-front distance, along-front distance, and time on vertical levels separated by 10 m. Geostrophic velocity was inferred using a variational approach, and the quasigeostrophic omega equation was solved for vertical and ageostrophic horizontal velocities. Peak downward vertical velocities were near 25 m day-1 in an event that propagated in the direction of the frontal jet. An examination of an isopycnal surface that outcropped as the front formed showed consistency between the movement of the tracers and the inferred vertical velocity. The vertical velocity tended to be downward on the dense side of the front and upward on the light side so as to flatten the front in the manner of a baroclinic instability. The resulting heat flux approached 80 W m-2 near 100 m depth with a structure that would cause restratification of the front. One glider was used to track an isotherm over a day for a direct measure of vertical velocity as large as 50 m day-1, with a net downward displacement of 15 m over the day.


2021 ◽  
Vol 8 ◽  
Author(s):  
Bàrbara Barceló-Llull ◽  
Ananda Pascual ◽  
Antonio Sánchez-Román ◽  
Eugenio Cutolo ◽  
Francesco d'Ovidio ◽  
...  

After the launch of the Surface Water and Ocean Topography (SWOT) satellite planned for 2022, the region around the Balearic Islands (western Mediterranean Sea) will be the target of several in situ sampling campaigns aimed at validating the first available tranche of SWOT data. In preparation for this validation, the PRE-SWOT cruise in 2018 was conceived to explore the three-dimensional (3D) circulation at scales of 20 km that SWOT aims to resolve, included in the fine-scale range (1–100 km) as defined by the altimetric community. These scales and associated variability are not captured by contemporary nadir altimeters. Temperature and salinity observations reveal a front that separates local Atlantic Water in the northeast from recent Atlantic Water in the southeast, and extends from the surface to ~150 m depth with maximum geostrophic velocities of the order of 0.20 m s−1 and a geostrophic Rossby number that ranges between −0.24 and 0.32. This front is associated with a 3D vertical velocity field characterized by an upwelling cell surrounded by two downwelling cells, one to the east and the other to the west. The upwelling cell is located near an area with high nitrate concentrations, possibly indicating a recent inflow of nutrients. Meanwhile, subduction of chlorophyll-a in the western downwelling cell is detected in glider observations. The comparison of the altimetric geostrophic velocity with the CTD-derived geostrophic velocity, the ADCP horizontal velocity, and drifter trajectories, shows that the present-day resolution of altimetric products precludes the representation of the currents that drive the drifter displacement. The Lagrangian analysis based on these velocities demonstrates that the study region has frontogenetic dynamics not detected by altimetry. Our results suggest that the horizontal component of the flow is mainly geostrophic down to scales of 20 km in the study region and during the period analyzed, and should therefore be resolvable by SWOT and other future satellite-borne altimeters with higher resolutions. In addition, fine-scale features have an impact on the physical and biochemical spatial variability, and multi-platform in situ sampling with a resolution similar to that expected from SWOT can capture this variability.


2021 ◽  
Author(s):  
◽  
Luna Hiron

Loop Current Frontal Eddies (LCFEs) are cold-core vortices located in the vicinity of the Loop Current (LC) and are known to intensify and play an essential role in the LC shedding. The amplification of the LCFEs also affects the local circulation. During the 2010 Deepwater Horizon oil spill, part of the oil was entrained around and inside an intensified LCFE. The goal of this research is to characterize the LCFE intensification and understand its effects on the LC and surrounding flow. Firstly, the LC-LCFE interaction was investigated using altimetry and a mooring array. The intensification of the observed LCFEs shows similar characteristics over time, independent of their location: a steep increase in kinetic energy, a corresponding decrease in SSH, and an increase in size. LCFE intensification is dependent on the distance from the LC front. As the LCFE grows, the flow at the interface with the LC becomes stronger and deeper, and the horizontal density gradient between the features increases. Further intensification of the LC front and the LCFEs is suggested to be driven by the advection (nonlinear) term and the pressure-gradient (linear) term in the momentum budget. Secondly, the ageostrophy of the LC meanders during LCFE intensification is assessed using HYCOM velocity and geostrophic velocity from altimetry. The results indicate that during strong meandering, especially before and during LC shedding and in the presence of frontal eddies, the centrifugal force becomes as important as the Coriolis and the pressure-gradient forces, i.e., the LC meanders are in gradient-wind balance. Finally, the ability of LCFEs to transport particles without exchange with the exterior (i.e., material coherence) is investigated. The results show that the frontal eddies can remain coherent for up to 20 days at the surface and up to 25 days at deeper layers. Particles inside the frontal eddies were tracked backward in time and showed that the material coherence of the eddies builds up from Gulf water and can drive cross-shelf exchange of particles, water properties, and nutrients.


2021 ◽  
Author(s):  
Francesca Doglioni ◽  
Robert Ricker ◽  
Benjamin Rabe ◽  
Torsten Kanzow

Abstract. In recent decades the decline of the Arctic sea ice has modified vertical momentum fluxes from the atmosphere to the ice and the ocean, thereby affecting the surface circulation. In the past ten years satellite altimetry has contributed to understand these changes. However, data from ice-covered regions require dedicated processing, originating inconsistency between ice-covered and open ocean regions in terms of biases, corrections and data coverage. Thus, efforts to generate consistent Arctic-wide datasets are still required to enable the study of the Arctic Ocean surface circulation at basin-wide scales. Here we provide and assess a monthly gridded dataset of sea surface height anomaly and geostrophic velocity. This dataset is based on Cryosat-2 observations over ice-covered and open ocean areas of the Arctic up to 88° N for the period 2011 to 2018, interpolated using the Data-Interpolating Variational Analysis (DIVA) method. Geostrophic velocity was not available north of 82° N before this study. To examine the robustness of our results, we compare the generated fields to one independent altimetry dataset and independent data of ocean bottom pressure, steric height and near-surface ocean velocity from moorings. Results from the comparison to near-surface ocean velocity show that our geostrophic velocity fields can resolve seasonal to interannual variability of boundary currents wider than about 50 km. We further discuss the seasonal cycle of sea surface height and geostrophic velocity in the context of previous literature. Large scale features emerge, i.e. Arctic-wide maximum sea surface height between October and January, with the highest amplitude over the shelves, and basin wide seasonal acceleration of Arctic slope currents in winter. We suggest that this dataset can be used to study not only the large scale sea surface height and circulation but also the regionally confined boundary currents. The dataset is available in netCDF format from PANGAEA at [data currently under review].


2020 ◽  
Vol 50 (12) ◽  
pp. 3529-3544
Author(s):  
K. McMonigal ◽  
Lisa M. Beal ◽  
Shane Elipot ◽  
Kathryn L. Gunn ◽  
Juliet Hermes ◽  
...  

AbstractFor the first time, the temperature transport of the Agulhas Current is quantified in a time series. Over a 25-month mooring deployment at 34°S, seven tall moorings were instrumented to measure current velocity, temperature, and salinity. Current- and pressure-recording inverted echosounders were used to extend geostrophic velocity, temperature, and salinity records to 300 km offshore. In the mean, the current transports 3.8 PW of heat southward relative to 0°C: −76 Sv (1 Sv ≡ 106 m3 s−1) at a transport-weighted temperature of 12.3°C. A 0.9-PW standard deviation in temperature transport is due to variability in both volume transport and the temperature field. Meandering of the current core dominates variability in the temperature field by warming temperatures offshore and cooling temperatures near the coast. However, meandering has a limited impact on the temperature transport, which varies more closely with a deepening and broadening of the current associated with an inshore isotherm shoaling and an offshore isotherm deepening. Stronger southward temperature transports correspond to a deeper current transporting more volume, yet at a cooler transport-weighted temperature. Seasonality is not observed in the temperature transport time series, possibly because of the offsetting effects of cooler temperatures during times of seasonally stronger volume transports. Although volume transport and temperature transport are highly correlated, the large variability in transport-weighted temperature means that using volume transport alone to infer temperature transport results in an error that could be as large as 24% of the southern Indian Ocean heat transport.


2020 ◽  
Vol 37 (6) ◽  
pp. 975-992
Author(s):  
Jacob M. Steinberg ◽  
Charles C. Eriksen

AbstractIdealized simulations of autonomous underwater glider sampling along sawtooth vertical–horizontal paths are carried out in two high-resolution ocean numerical models to explore the accuracy of isopycnal vertical displacement and geostrophic velocity profile estimates. The effects of glider flight speed, sampling pattern geometry, and measurement noise on velocity profile accuracy are explored to interpret recent full-ocean-depth Deepglider observations and provide sampling recommendations for glider missions. The average magnitude of velocity error profiles, defined as the difference between simulated glider-sampled geostrophic velocity profile estimates and model velocity profiles averaged over the spatial and temporal extent of corresponding simulated glider paths, is less than 0.02 m s−1 over most of the water column. This accuracy and the accuracy of glider geostrophic shear profile estimates are dependent on the ratio of mesoscale eddy to internal wave velocity amplitude. Projection of normal modes onto full-depth vertical profiles of model and simulated glider isopycnal vertical displacement and geostrophic velocity demonstrates that gliders are capable of resolving barotropic and baroclinic structure through at least the eighth baroclinic mode.


2019 ◽  
Vol 11 (4) ◽  
pp. 1765-1781 ◽  
Author(s):  
Felix L. Müller ◽  
Denise Dettmering ◽  
Claudia Wekerle ◽  
Christian Schwatke ◽  
Marcello Passaro ◽  
...  

Abstract. A deeper knowledge about geostrophic ocean surface currents in the northern Nordic Seas supports the understanding of ocean dynamics in an area affected by sea ice and rapidly changing environmental conditions. Monitoring these areas by satellite altimetry results in a fragmented and irregularly distributed data sampling and prevents the computation of homogeneous and highly resolved spatio-temporal datasets. In order to overcome this problem, an ocean model is used to fill in data when altimetry observations are missing. The present study provides a novel dataset based on a combination of along-track satellite-altimetry-derived dynamic ocean topography (DOT) elevations and simulated differential water heights (DWHs) from the Finite Element Sea ice Ocean Model (FESOM) version 1.4. This innovative dataset differs from classical assimilation methods because it substitutes altimetry data with the model output when altimetry fails or is not available. The combination approach is mainly based on a principal component analysis (PCA) after reducing both quantities by their constant and seasonal signals. In the main step, the most-dominant spatial patterns of the modeled differential water heights as provided by the PCA are linked with the temporal variability in the estimated DOT from altimetry by performing a principal component synthesis (PCS). After the combination, the annual signal obtained by altimetry and a constant offset are re-added in order to reference the final data product to the altimetry height level. Surface currents are computed by applying the geostrophic flow equations to the combined topography. The resulting final product is characterized by the spatial resolution of the ocean model around 1 km and the temporal variability in the altimetry along-track derived DOT heights. The combined DOT is compared to an independent DOT product, resulting in a positive correlation of about 80 %, to provide more detailed information about short periodic and finer spatial structures. The derived geostrophic velocity components are evaluated by in situ surface drifter observations. Summarizing all drifter observations in equally sized bins and comparing the velocity components shows good agreement in spatial patterns, magnitude and flow direction. Mean differences of 0.004 m s−1 in the zonal and 0.02 m s−1 in the meridional component are observed. A direct pointwise comparison between the combined geostrophic velocity components interpolated onto the drifter locations indicates that about 94 % of all residuals are smaller than 0.15 m s−1. The dataset is able to provide surface circulation information within the sea ice area and can be used to support a deeper comprehension of ocean currents in the northern Nordic Seas affected by rapid environmental changes in the 1995–2012 time period. The data are available at https://doi.org/10.1594/PANGAEA.900691 (Müller et al., 2019).


Sign in / Sign up

Export Citation Format

Share Document