Biofilm increases permeate quality by organic carbon degradation in low pressure ultrafiltration

2015 ◽  
Vol 85 ◽  
pp. 512-520 ◽  
Author(s):  
A. Chomiak ◽  
J. Traber ◽  
E. Morgenroth ◽  
N. Derlon
2021 ◽  
Author(s):  
Dominik Hülse ◽  
James Bradley ◽  
Sebastiaan van de Velde ◽  
Andy Dale ◽  
Sandra Arndt ◽  
...  

mBio ◽  
2017 ◽  
Vol 8 (6) ◽  
Author(s):  
Jake V. Bailey ◽  
Beverly E. Flood ◽  
Elizabeth Ricci ◽  
Nathalie Delherbe

ABSTRACT The largest known bacteria, Thiomargarita spp., have yet to be isolated in pure culture, but their large size allows for individual cells to be monitored in time course experiments or to be individually sorted for omics-based investigations. Here we investigated the metabolism of individual cells of Thiomargarita spp. by using a novel application of a tetrazolium-based dye that measures oxidoreductase activity. When coupled with microscopy, staining of the cells with a tetrazolium-formazan dye allows metabolic responses in Thiomargarita spp. to be to be tracked in the absence of observable cell division. Additionally, the metabolic activity of Thiomargarita sp. cells can be differentiated from the metabolism of other microbes in specimens that contain adherent bacteria. The results of our redox dye-based assay suggest that Thiomargarita is the most metabolically versatile under anoxic conditions, where it appears to express cellular oxidoreductase activity in response to the electron donors succinate, acetate, citrate, formate, thiosulfate, H2, and H2S. Under hypoxic conditions, formazan staining results suggest the metabolism of succinate and likely acetate, citrate, and H2S. Cells incubated under oxic conditions showed the weakest formazan staining response, and then only to H2S, citrate, and perhaps succinate. These results provide experimental validation of recent genomic studies of Candidatus Thiomargarita nelsonii that suggest metabolic plasticity and mixotrophic metabolism. The cellular oxidoreductase response of bacteria attached to the exterior of Thiomargarita also supports the possibility of trophic interactions between these largest of known bacteria and attached epibionts. IMPORTANCE The metabolic potential of many microorganisms that cannot be grown in the laboratory is known only from genomic data. Genomes of Thiomargarita spp. suggest that these largest of known bacteria are mixotrophs, combining lithotrophic metabolism with organic carbon degradation. Our use of a redox-sensitive tetrazolium dye to query the metabolism of these bacteria provides an independent line of evidence that corroborates the apparent metabolic plasticity of Thiomargarita observed in recently produced genomes. Finding new cultivation-independent means of testing genomic results is critical to testing genome-derived hypotheses on the metabolic potentials of uncultivated microorganisms. IMPORTANCE The metabolic potential of many microorganisms that cannot be grown in the laboratory is known only from genomic data. Genomes of Thiomargarita spp. suggest that these largest of known bacteria are mixotrophs, combining lithotrophic metabolism with organic carbon degradation. Our use of a redox-sensitive tetrazolium dye to query the metabolism of these bacteria provides an independent line of evidence that corroborates the apparent metabolic plasticity of Thiomargarita observed in recently produced genomes. Finding new cultivation-independent means of testing genomic results is critical to testing genome-derived hypotheses on the metabolic potentials of uncultivated microorganisms.


2020 ◽  
Vol 54 (14) ◽  
pp. 8801-8810 ◽  
Author(s):  
Dong Ma ◽  
Juan Wu ◽  
Peng Yang ◽  
Mengqiang Zhu

2020 ◽  
Author(s):  
Giulia Grandi ◽  
Enrico Bertuzzo

<p>Although their contribution was neglected in the past, inland waters play a significant role in the carbon cycle and affect CO<sub>2</sub> global balance. Streams and rivers are now considered not only as pipelines but as active reactors able to collect and transform carbon from terrestrial ecosystems trough drainage, erosion, deposition and respiration. Quantifying the transfer of carbon from the terrestrial to the riverine ecosystems is thus of crucial importance to fully appreciate carbon cycle at the watershed, regional and global scales. Such transfer is largely controlled by the processes occurring in the critical zone where the carbon and water cycles are tightly coupled. Previous studies investigated how hydrological drivers can affect Dissolved Organic Carbon (DOC) concentration in streams highlighting an hysteretic and unsteady behavior for the DOC-discharge relationship. In this study, we focus on the drainage flux from hillslopes to stream and river networks during rainfall events combining a transport model for water and a model of carbon degradation in soil. Using high-frequency records of chloride and DOC in Plynlimon catchments (UK), we employ the recently developed StorAge Selection (SAS) theory to evaluate water travel time and its partition as evapotranspiration, discharge and storage. We combine this approach with the reactivity continuum  theory to model  carbon degradation along the flow paths using a gamma-distribution as probability density function of the quality. The developed model can thus predict not only the flux of DOC released from hillslopes but also its quality (i.e. lability). We also show how the variability of the DOC-discharge relationship can partially be explained by hydrological fluctuations.</p>


2010 ◽  
Vol 27 (4) ◽  
pp. 303-314 ◽  
Author(s):  
Elsabé M. Julies ◽  
Bernhard M. Fuchs ◽  
Carol Arnosti ◽  
Volker Brüchert

Sign in / Sign up

Export Citation Format

Share Document