Chronic effects of brine discharge from large-scale seawater reverse osmosis desalination facilities on benthic bacteria

2019 ◽  
Vol 151 ◽  
pp. 478-487 ◽  
Author(s):  
Hila Frank ◽  
Katarina E. Fussmann ◽  
Eyal Rahav ◽  
Edo Bar Zeev
2019 ◽  
Author(s):  
Chem Int

The objective of this work is to study the ageing state of a used reverse osmosis (RO) membrane taken in Algeria from the Benisaf Water Company seawater desalination unit. The study consists of an autopsy procedure used to perform a chain of analyses on a membrane sheet. Wear of the membrane is characterized by a degradation of its performance due to a significant increase in hydraulic permeability (25%) and pressure drop as well as a decrease in salt retention (10% to 30%). In most cases the effects of ageing are little or poorly known at the local level and global measurements such as (flux, transmembrane pressure, permeate flow, retention rate, etc.) do not allow characterization. Therefore, a used RO (reverse osmosis) membrane was selected at the site to perform the membrane autopsy tests. These tests make it possible to analyze and identify the cause as well as to understand the links between performance degradation observed at the macroscopic scale and at the scale at which ageing takes place. External and internal visual observations allow seeing the state of degradation. Microscopic analysis of the used membranes surface shows the importance of fouling. In addition, quantification and identification analyses determine a high fouling rate in the used membrane whose foulants is of inorganic and organic nature. Moreover, the analyses proved the presence of a biofilm composed of protein.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2772
Author(s):  
Vishwas Powar ◽  
Rajendra Singh

Plummeting reserves and increasing demand of freshwater resources have culminated into a global water crisis. Desalination is a potential solution to mitigate the freshwater shortage. However, the process of desalination is expensive and energy-intensive. Due to the water-energy-climate nexus, there is an urgent need to provide sustainable low-cost electrical power for desalination that has the lowest impact on climate and related ecosystem challenges. For a large-scale reverse osmosis desalination plant, we have proposed the design and analysis of a photovoltaics and battery-based stand-alone direct current power network. The design methodology focusses on appropriate sizing, optimum tilt and temperature compensation techniques based on 10 years of irradiation data for the Carlsbad Desalination Plant in California, USA. A decision-tree approach is employed for ensuring hourly load-generation balance. The power flow analysis evaluates self-sufficient generation even during cloud cover contingencies. The primary goal of the proposed system is to maximize the utilization of generated photovoltaic power and battery energy storage with minimal conversions and transmission losses. The direct current based topology includes high-voltage transmission, on-the-spot local inversion, situational awareness and cyber security features. Lastly, economic feasibility of the proposed system is carried out for a plant lifetime of 30 years. The variable effect of utility-scale battery storage costs for 16–18 h of operation is studied. Our results show that the proposed design will provide low electricity costs ranging from 3.79 to 6.43 ¢/kWh depending on the debt rate. Without employing the concept of baseload electric power, photovoltaics and battery-based direct current power networks for large-scale desalination plants can achieve tremendous energy savings and cost reduction with negligible carbon footprint, thereby providing affordable water for all.


2020 ◽  
Vol 53 (2) ◽  
pp. 16561-16568
Author(s):  
Mariam Elnour ◽  
Nader Meskin ◽  
Khlaed M. Khan ◽  
Raj Jain ◽  
Syed Zaidi ◽  
...  

2021 ◽  
Vol 225 ◽  
pp. 364-370
Author(s):  
G. Nicolás Marichal Plasencia ◽  
Jorge Camacho-Espino ◽  
Deivis Ávila Prats ◽  
José A. Rodríguez Hernández ◽  
Felipe San Luis Gutiérrez

Sign in / Sign up

Export Citation Format

Share Document